scholarly journals Quasi-Newton methods for atmospheric chemistry simulations: implementation in UKCA UM vn10.8

2018 ◽  
Vol 11 (8) ◽  
pp. 3089-3108 ◽  
Author(s):  
Emre Esentürk ◽  
Nathan Luke Abraham ◽  
Scott Archer-Nicholls ◽  
Christina Mitsakou ◽  
Paul Griffiths ◽  
...  

Abstract. A key and expensive part of coupled atmospheric chemistry–climate model simulations is the integration of gas-phase chemistry, which involves dozens of species and hundreds of reactions. These species and reactions form a highly coupled network of differential equations (DEs). There exist orders of magnitude variability in the lifetimes of the different species present in the atmosphere, and so solving these DEs to obtain robust numerical solutions poses a stiff problem. With newer models having more species and increased complexity, it is now becoming increasingly important to have chemistry solving schemes that reduce time but maintain accuracy. While a sound way to handle stiff systems is by using implicit DE solvers, the computational costs for such solvers are high due to internal iterative algorithms (e.g. Newton–Raphson methods). Here, we propose an approach for implicit DE solvers that improves their convergence speed and robustness with relatively small modification in the code. We achieve this by blending the existing Newton–Raphson (NR) method with quasi-Newton (QN) methods, whereby the QN routine is called only on selected iterations of the solver. We test our approach with numerical experiments on the UK Chemistry and Aerosol (UKCA) model, part of the UK Met Office Unified Model suite, run in both an idealised box-model environment and under realistic 3-D atmospheric conditions. The box-model tests reveal that the proposed method reduces the time spent in the solver routines significantly, with each QN call costing 27 % of a call to the full NR routine. A series of experiments over a range of chemical environments was conducted with the box model to find the optimal iteration steps to call the QN routine which result in the greatest reduction in the total number of NR iterations whilst minimising the chance of causing instabilities and maintaining solver accuracy. The 3-D simulations show that our moderate modification, by means of using a blended method for the chemistry solver, speeds up the chemistry routines by around 13 %, resulting in a net improvement in overall runtime of the full model by approximately 3 % with negligible loss in the accuracy. The blended QN method also improves the robustness of the solver, reducing the number of grid cells which fail to converge after 50 iterations by 40 %. The relative differences in chemical concentrations between the control run and that using the blended QN method are of order  ∼  10−7 for longer-lived species, such as ozone, and below the threshold for solver convergence (10−4) almost everywhere for shorter-lived species such as the hydroxyl radical.

2018 ◽  
Author(s):  
Emre Esenturk ◽  
Luke Abraham ◽  
Scott Archer-Nicholls ◽  
Christina Mitsakou ◽  
Paul Griffiths ◽  
...  

Abstract. A key and expensive part of coupled atmospheric chemistry-climate model simulations is the integration of gas phase chemistry, which involves dozens of species and hundreds of reactions. These species and reactions form a highly-coupled network of Differential Equations (DEs). There exists orders of magnitude variability in the lifetimes of the different species present in the atmosphere and so solving these DEs to obtain robust numerical solutions poses a "stiff problem". With newer models having more species and increased complexity it is now becoming increasingly important to have chemistry solving schemes that reduce time but maintain accuracy. While a sound way to handle stiff systems is by using implicit DE solvers, the computational costs for such solvers are high due to internal iterative algorithms (e.g., Newton-Raphson methods). Here we propose an approach for implicit DE solvers that improves their convergence speed and robustness with relatively small modification in the code. We achieve this by blending the existing Newton-Raphson (NR) method with Quasi-Newton (QN) methods, whereby the QN routine is called only on selected iterations of the solver. We test our approach with numerical experiments on the UK Chemistry and Aerosol (UKCA) model, part of the UK Met Office Unified Model suite, run in both an idealized box-model environment and under realistic 3D atmospheric conditions. The box model tests reveal that the proposed method reduces the time spent in the solver routines significantly, with each QN call costing 27 % of a call to the full NR routine. A series of experiments over a range of chemical environments was conducted with the box-model to find the optimal iteration steps to call the QN routine which result in the greatest reduction in the total number of NR iterations whilst minimising the chance of causing instabilities and maintaining solver accuracy. The 3D simulations show that our moderate modification, by means of using a blended method on the chemistry solver, speeds up the chemistry routines by around 13 %, resulting in a net improvement in overall run-time of the full model by approximately 3 % with negligible loss in the accuracy. The blended QN method also improves the robustness of the solver, reducing the number of grid cells which fail to converge after 50 iterations. The differences in chemical concentrations between the control run and that using the blended QN method are negligible for longer lived species, such as ozone, and below the threshold for solver convergence almost everywhere for shorter lived species such as the hydroxyl radical.


2020 ◽  
Author(s):  
Emre Esenturk

<p>A key and expensive part of coupled atmospheric chemistry-climate model simulations is the integration of gas phase chemistry, which involves dozens of species and hundreds of reactions. These species and reactions form a highly-coupled network of Differential Equations (DEs). There exists orders of magnitude variability in the lifetimes of the different species present in the atmosphere and so solving these DEs to obtain robust numerical solutions poses a “stiff problem”. With newer models having more species and increased complexity it is now becoming increasingly important to have chemistry solving schemes that reduce time but maintain accuracy.</p><p>A sound way to handle stiff systems is by using implicit DE solvers but the computational costs for such solvers are high due to internal iterative algorithms (e.g., Newton-Raphson (NR) methods). Here we propose an approach for implicit DE solvers that improves their convergence speed and robustness with relatively small modification in the code. We achieve this by using Quasi-Newton (QN) methods. We test our approach with numerical experiments on the UK Chemistry and Aerosol (UKCA) model, part of the UK Met Office Unified Model suite, run in both an idealized box-model environment and under realistic 3D atmospheric conditions. The box model tests reveal that the proposed method reduces the time spent in the solver routines significantly, with each QN call costing 27% of a call to the full NR routine. A series of experiments over a range of chemical environments was conducted with the box-model to find the optimal iteration steps to call the QN routine which result in the greatest reduction in the total number of NR iterations whilst minimising the chance of causing instabilities and maintaining solver accuracy. The 3D simulations show that our method for the chemistry solver, speeds up the chemistry routines by around 13%, resulting in a net improvement in overall run-time of the full model by approximately 3% with negligible loss in the accuracy (relative error of order 10<sup>-7</sup>) . The QN method also improves the robustness of the solver by significantly reducing (40% ) the number of grid cells which fail to converge hence avoiding unnecessary timestep adjustments. </p>


2020 ◽  
Vol 13 (6) ◽  
pp. 3119-3146 ◽  
Author(s):  
Robert Woodward-Massey ◽  
Eloise J. Slater ◽  
Jake Alen ◽  
Trevor Ingham ◽  
Danny R. Cryer ◽  
...  

Abstract. Hydroxyl (OH) and hydroperoxy (HO2) radicals are central to the understanding of atmospheric chemistry. Owing to their short lifetimes, these species are frequently used to test the accuracy of model predictions and their underlying chemical mechanisms. In forested environments, laser-induced fluorescence–fluorescence assay by gas expansion (LIF–FAGE) measurements of OH have often shown substantial disagreement with model predictions, suggesting the presence of unknown OH sources in such environments. However, it is also possible that the measurements have been affected by instrumental artefacts, due to the presence of interfering species that cannot be discriminated using the traditional method of obtaining background signals via modulation of the laser excitation wavelength (“OHwave”). The interference hypothesis can be tested by using an alternative method to determine the OH background signal, via the addition of a chemical scavenger prior to sampling of ambient air (“OHchem”). In this work, the Leeds FAGE instrument was modified to include such a system to facilitate measurements of OHchem, in which propane was used to selectively remove OH from ambient air using an inlet pre-injector (IPI). The IPI system was characterised in detail, and it was found that the system did not reduce the instrument sensitivity towards OH (< 5 % difference to conventional sampling) and was able to efficiently scavenge external OH (> 99 %) without the removal of OH formed inside the fluorescence cell (< 5 %). Tests of the photolytic interference from ozone in the presence of water vapour revealed a small but potentially significant interference, equivalent to an OH concentration of ∼4×105 molec. cm−3 under typical atmospheric conditions of [O3] =50 ppbv and [H2O] =1 %. Laboratory experiments to investigate potential interferences from products of isoprene ozonolysis did result in interference signals, but these were negligible when extrapolated down to ambient ozone and isoprene levels. The interference from NO3 radicals was also tested but was found to be insignificant in our system. The Leeds IPI module was deployed during three separate field intensives that took place in summer at a coastal site in the UK and both in summer and winter in the megacity of Beijing, China, allowing for investigations of ambient OH interferences under a wide range of chemical and meteorological conditions. Comparisons of ambient OHchem measurements to the traditional OHwave method showed excellent agreement, with OHwave vs OHchem slopes of 1.05–1.16 and identical behaviour on a diel basis, consistent with laboratory interference tests. The difference between OHwave and OHchem (“OHint”) was found to scale non-linearly with OHchem, resulting in an upper limit interference of (5.0±1.4) ×106 molec. cm−3 at the very highest OHchem concentrations measured (23×106 molec. cm−3), accounting for ∼14 %–21 % of the total OHwave signal.


2011 ◽  
Vol 4 (4) ◽  
pp. 2791-2847 ◽  
Author(s):  
S. Metzger ◽  
B. Steil ◽  
L. Xu ◽  
J. E. Penner ◽  
J. Lelieveld

Abstract. We introduce version 4 of the EQuilibrium Simplified Aerosol Model (EQSAM4), which is part of our aerosol chemistry-microphysics module (GMXe) and chemistry-climate model (EMAC). We focus on the relative humidity of deliquescence (RHD) based water uptake of atmospheric aerosols, as this is important for atmospheric chemistry and climate modeling, e.g. to calculate the aerosol optical depth (AOD). Since the main EQSAM4 applications will involve large-scale, long-term and high-resolution atmospheric chemistry-climate modeling with EMAC, computational efficiency is an important requirement. EQSAM4 parameterizes the composition and water uptake of multicomponent atmospheric aerosols by considering the gas-liquid-solid partitioning of single and mixed solutes. EQSAM4 builds on analytical, and hence CPU efficient, aerosol hygroscopic growth parameterizations to compute the aerosol liquid water content (AWC). The parameterizations are described in the companion paper (Metzger et al., 2011) and only require a compound specific coefficient νi to derive the single solute molality and the AWC for the whole range of water activity (aw). νi is pre-calculated and applied during runtime by using internal look-up tables. Here, the EQSAM4 equilibrium model is described and compared to the more explicit thermodynamic model ISORROPIA II. Both models are imbedded in EMAC/GMXe. Box model inter-comparisons, including the reference model E-AIM, and global simulations with EMAC show that gas-particle partitioning, including semi-volatiles and water, is in good agreement. A more comprehensive box model inter-comparison of EQSAM4 with EQUISOLV II is subject of the revised publication of Xu et al. (2009), i.e. Xu et al. (2011).


2012 ◽  
Vol 12 (20) ◽  
pp. 9977-10000 ◽  
Author(s):  
Y. F. Elshorbany ◽  
B. Steil ◽  
C. Brühl ◽  
J. Lelieveld

Abstract. The photolysis of HONO is important for the atmospheric HOx (OH + HO2) radical budget and ozone formation, especially in polluted air. Nevertheless, owing to the incomplete knowledge of HONO sources, realistic HONO mechanisms have not yet been implemented in global models. We investigated measurement data sets from 15 field measurement campaigns conducted in different countries worldwide. It appears that the HONO/NOx ratio is a good proxy predictor for HONO mixing ratios under different atmospheric conditions. From the robust relationship between HONO and NOx, a representative mean HONO/NOx ratio of 0.02 has been derived. Using a global chemistry-climate model and employing this HONO/NOx ratio, realistic HONO levels are simulated, being about one order of magnitude higher than the reference calculations that only consider the reaction OH + NO → HONO. The resulting enhancement of HONO significantly impacts HOx levels and photo-oxidation products (e.g, O3, PAN), mainly in polluted regions. Furthermore, the relative enhancements in OH and secondary products are higher in winter than in summer, thus enhancing the oxidation capacity in polluted regions, especially in winter when other photolytic OH sources are of minor importance. Our results underscore the need to improve the understanding of HONO chemistry and its representation in atmospheric models.


2012 ◽  
Vol 12 (5) ◽  
pp. 12885-12934 ◽  
Author(s):  
Y. F. Elshorbany ◽  
B. Steil ◽  
C. Brühl ◽  
J. Lelieveld

Abstract. The photolysis of HONO is important for the atmospheric HOx (OH+HO2) radical budget and ozone formation, especially in polluted air. Nevertheless, owing to the incomplete knowledge of HONO sources, realistic HONO mechanisms have not yet been implemented in global models. We investigated measurement data sets from 15 field measurement campaigns conducted in different countries worldwide. It appears that the HONO/NOx ratio is a good proxy predictor for HONO mixing ratios under different atmospheric conditions. From the robust relationship between HONO and NOx, a representative mean HONO/NOx ratio of 0.02 has been derived. Using a global chemistry-climate model and employing this HONO/NOx ratio, realistic HONO levels are simulated, being about one order of magnitude higher than the reference calculations, which only consider the reaction OH+NO-> HONO. The resulting enhancement of HONO significantly impacts HOx levels and photo-oxidation products (e.g, O3, PAN), mainly in polluted regions. Furthermore, the relative enhancements in OH and secondary products were higher in winter than in summer, thus enhancing the oxidation capacity in polluted regions, especially in winter, when the other photolytic OH sources are of minor importance. Our results underscore the need to improve the understanding of HONO chemistry and its representation in atmospheric models.


2015 ◽  
Vol 15 (2) ◽  
pp. 829-843 ◽  
Author(s):  
T. Sakazaki ◽  
M. Shiotani ◽  
M. Suzuki ◽  
D. Kinnison ◽  
J. M. Zawodny ◽  
...  

Abstract. This paper contains a comprehensive investigation of the sunset–sunrise difference (SSD, i.e., the sunset-minus-sunrise value) of the ozone mixing ratio in the latitude range of 10° S–10° N. SSD values were determined from solar occultation measurements based on data obtained from the Stratospheric Aerosol and Gas Experiment (SAGE) II, the Halogen Occultation Experiment (HALOE), and the Atmospheric Chemistry Experiment–Fourier transform spectrometer (ACE–FTS). The SSD was negative at altitudes of 20–30 km (−0.1 ppmv at 25 km) and positive at 30–50 km (+0.2 ppmv at 40–45 km) for HALOE and ACE–FTS data. SAGE II data also showed a qualitatively similar result, although the SSD in the upper stratosphere was 2 times larger than those derived from the other data sets. On the basis of an analysis of data from the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) and a nudged chemical transport model (the specified dynamics version of the Whole Atmosphere Community Climate Model: SD–WACCM), we conclude that the SSD can be explained by diurnal variations in the ozone concentration, particularly those caused by vertical transport by the atmospheric tidal winds. All data sets showed significant seasonal variations in the SSD; the SSD in the upper stratosphere is greatest from December through February, while that in the lower stratosphere reaches a maximum twice: during the periods March–April and September–October. Based on an analysis of SD–WACCM results, we found that these seasonal variations follow those associated with the tidal vertical winds.


2020 ◽  
Author(s):  
Larry Wayne Horowitz ◽  
Vaishali Naik ◽  
Fabien Paulot ◽  
Paul A Ginoux ◽  
John P Dunne ◽  
...  

2013 ◽  
Vol 13 (24) ◽  
pp. 12215-12231 ◽  
Author(s):  
Z. S. Stock ◽  
M. R. Russo ◽  
T. M. Butler ◽  
A. T. Archibald ◽  
M. G. Lawrence ◽  
...  

Abstract. We examine the effects of ozone precursor emissions from megacities on present-day air quality using the global chemistry–climate model UM-UKCA (UK Met Office Unified Model coupled to the UK Chemistry and Aerosols model). The sensitivity of megacity and regional ozone to local emissions, both from within the megacity and from surrounding regions, is important for determining air quality across many scales, which in turn is key for reducing human exposure to high levels of pollutants. We use two methods, perturbation and tagging, to quantify the impact of megacity emissions on global ozone. We also completely redistribute the anthropogenic emissions from megacities, to compare changes in local air quality going from centralised, densely populated megacities to decentralised, lower density urban areas. Focus is placed not only on how changes to megacity emissions affect regional and global NOx and O3, but also on changes to NOy deposition and to local chemical environments which are perturbed by the emission changes. The perturbation and tagging methods show broadly similar megacity impacts on total ozone, with the perturbation method underestimating the contribution partially because it perturbs the background chemical environment. The total redistribution of megacity emissions locally shifts the chemical environment towards more NOx-limited conditions in the megacities, which is more conducive to ozone production, and monthly mean surface ozone is found to increase up to 30% in megacities, depending on latitude and season. However, the displacement of emissions has little effect on the global annual ozone burden (0.12% change). Globally, megacity emissions are shown to contribute ~3% of total NOy deposition. The changes in O3, NOx and NOy deposition described here are useful for quantifying megacity impacts and for understanding the sensitivity of megacity regions to local emissions. The small global effects of the 100% redistribution carried out in this study suggest that the distribution of emissions on the local scale is unlikely to have large implications for chemistry–climate processes on the global scale.


2016 ◽  
Author(s):  
Christiane Hofmann ◽  
Astrid Kerkweg ◽  
Peter Hoor ◽  
Patrick Jöckel

Abstract. Transport of air masses from the stratosphere to the troposphere along tropopause folds can lead to peaked ozone concentrations at ground level and hereby influence the long-term trend of tropospheric ozone. To improve the understanding of responsible processes and preferred regions of exchange, transient and reversible exchange processes in the vicinity of a tropopause fold are analysed on the basis of a case study. The global and regional atmospheric chemistry model system MECO(n), which couples the limited-area atmospheric chemistry and climate model COSMO-CLM/MESSy to the global model ECHAM5/MESSy for Atmospheric Chemistry (EMAC) is applied. Using similar process parametrisations in both model instances, the system allows for very consistent, simultaneous simulations at different spatial resolutions. Simulated ozone enhancements at ground level, caused by descending stratospheric air masses, are evaluated with observational data. Because of the coarse resolution of the global model, the observed ozone enhancements are not captured by the global model instance. However, the results of the finer resolved, regional model instance coincide well with the measurements. Based on the combination of Eulerian and Lagrangian analysis methods it is shown that stratosphere-troposphere-exchange (STE) in the vicintity of the tropopause fold occurs in regions of turbulence and diabatic processes. Within the framework of a Lagrangian study the efficiency of mixing along a tropopause fold is quantified, showing that almost all (97 %) of the air masses originating in the tropopause fold are transported into the troposphere during the following two days.


Sign in / Sign up

Export Citation Format

Share Document