scholarly journals Development of the MIROC-ES2L Earth system model and the evaluation of biogeochemical processes and feedbacks

2020 ◽  
Vol 13 (5) ◽  
pp. 2197-2244 ◽  
Author(s):  
Tomohiro Hajima ◽  
Michio Watanabe ◽  
Akitomo Yamamoto ◽  
Hiroaki Tatebe ◽  
Maki A. Noguchi ◽  
...  

Abstract. This article describes the new Earth system model (ESM), the Model for Interdisciplinary Research on Climate, Earth System version 2 for Long-term simulations (MIROC-ES2L), using a state-of-the-art climate model as the physical core. This model embeds a terrestrial biogeochemical component with explicit carbon–nitrogen interaction to account for soil nutrient control on plant growth and the land carbon sink. The model's ocean biogeochemical component is largely updated to simulate the biogeochemical cycles of carbon, nitrogen, phosphorus, iron, and oxygen such that oceanic primary productivity can be controlled by multiple nutrient limitations. The ocean nitrogen cycle is coupled with the land component via river discharge processes, and external inputs of iron from pyrogenic and lithogenic sources are considered. Comparison of a historical simulation with observation studies showed that the model could reproduce the transient global climate change and carbon cycle as well as the observed large-scale spatial patterns of the land carbon cycle and upper-ocean biogeochemistry. The model demonstrated historical human perturbation of the nitrogen cycle through land use and agriculture and simulated the resultant impact on the terrestrial carbon cycle. Sensitivity analyses under preindustrial conditions revealed that the simulated ocean biogeochemistry could be altered regionally (and substantially) by nutrient input from the atmosphere and rivers. Based on an idealized experiment in which CO2 was prescribed to increase at a rate of 1 % yr−1, the transient climate response (TCR) is estimated to be 1.5 K, i.e., approximately 70 % of that from our previous ESM used in the Coupled Model Intercomparison Project Phase 5 (CMIP5). The cumulative airborne fraction (AF) is also reduced by 15 % because of the intensified land carbon sink, which results in an airborne fraction close to the multimodel mean of the CMIP5 ESMs. The transient climate response to cumulative carbon emissions (TCRE) is 1.3 K EgC−1, i.e., slightly smaller than the average of the CMIP5 ESMs, which suggests that “optimistic” future climate projections will be made by the model. This model and the simulation results contribute to CMIP6. The MIROC-ES2L could further improve our understanding of climate–biogeochemical interaction mechanisms, projections of future environmental changes, and exploration of our future options regarding sustainable development by evolving the processes of climate, biogeochemistry, and human activities in a holistic and interactive manner.

2019 ◽  
Author(s):  
Tomohiro Hajima ◽  
Michio Watanabe ◽  
Akitomo Yamamoto ◽  
Hiroaki Tatebe ◽  
Maki A. Noguchi ◽  
...  

Abstract. This study developed a new Model for Interdisciplinary Research on Climate, Earth System version2 for Long-term simulations (MIROC-ES2L) Earth system model (ESM) using a state-of-the-art climate model as the physical core. This model embeds a terrestrial biogeochemical component with explicit carbon–nitrogen interaction to account for soil nutrient control on plant growth and the land carbon sink. The model’s ocean biogeochemical component is largely updated to simulate biogeochemical cycles of carbon, nitrogen, phosphorus, iron, and oxygen such that oceanic primary productivity can be controlled by multiple nutrient limitations. The ocean nitrogen cycle is coupled with the land component via river discharge processes, and external inputs of iron from pyrogenic and lithogenic sources are considered. Comparison of a historical simulation with observation studies showed the model could reproduce reasonable historical changes in climate, the carbon cycle, and other biogeochemical variables together with reasonable spatial patterns of distribution of the present-day condition. The model demonstrated historical human perturbation of the nitrogen cycle through land use and agriculture, and it simulated the resultant impact on the terrestrial carbon cycle. Sensitivity analyses in preindustrial conditions revealed modeled ocean biogeochemistry could be changed regionally (but substantially) by nutrient inputs from the atmosphere and rivers. Through an idealized experiment of a 1 %CO2 increase scenario, we found the transient climate response (TCR) in the model is 1.5 K, i.e., approximately 70 % that of our previous model. The cumulative airborne fraction (AF) is also reduced by 15 % because of the intensified land carbon sink, resulting in an AF close to the multimodel mean of the Coupled Model Intercomparison Project Phase 5 (CMIP5) ESMs. The transient climate response to cumulative carbon emission (TCRE) is 1.3 K EgC−1, i.e., slightly smaller than the average of the CMIP5 ESMs, suggesting optimistic model performance in future climate projections. This model and the simulation results are contributing to the Coupled Model Intercomparison Project Phase 6 (CMIP6). The ESM could help further understanding of climate–biogeochemical interaction mechanisms, projections of future environmental changes, and exploration of our future options regarding sustainable development by evolving the processes of climate, biogeochemistry, and human activities in a holistic and interactive manner.


2020 ◽  
Vol 33 (14) ◽  
pp. 5845-5859
Author(s):  
Aixue Hu ◽  
Luke Van Roekel ◽  
Wilbert Weijer ◽  
Oluwayemi A. Garuba ◽  
Wei Cheng ◽  
...  

AbstractAs the greenhouse gas concentrations increase, a warmer climate is expected. However, numerous internal climate processes can modulate the primary radiative warming response of the climate system to rising greenhouse gas forcing. Here the particular internal climate process that we focus on is the Atlantic meridional overturning circulation (AMOC), an important global-scale feature of ocean circulation that serves to transport heat and other scalars, and we address the question of how the mean strength of AMOC can modulate the transient climate response. While the Community Earth System Model version 2 (CESM2) and the Energy Exascale Earth System Model version 1 (E3SM1) have very similar equilibrium/effective climate sensitivity, our analysis suggests that a weaker AMOC contributes in part to the higher transient climate response to a rising greenhouse gas forcing seen in E3SM1 by permitting a faster warming of the upper ocean and a concomitant slower warming of the subsurface ocean. Likewise the stronger AMOC in CESM2 by permitting a slower warming of the upper ocean leads in part to a smaller transient climate response. Thus, while the mean strength of AMOC does not affect the equilibrium/effective climate sensitivity, it is likely to play an important role in determining the transient climate response on the centennial time scale.


2013 ◽  
Vol 6 (2) ◽  
pp. 389-415 ◽  
Author(s):  
T. Iversen ◽  
M. Bentsen ◽  
I. Bethke ◽  
J. B. Debernard ◽  
A. Kirkevåg ◽  
...  

Abstract. NorESM is a generic name of the Norwegian earth system model. The first version is named NorESM1, and has been applied with medium spatial resolution to provide results for CMIP5 (http://cmip-pcmdi.llnl.gov/cmip5/index.html) without (NorESM1-M) and with (NorESM1-ME) interactive carbon-cycling. Together with the accompanying paper by Bentsen et al. (2012), this paper documents that the core version NorESM1-M is a valuable global climate model for research and for providing complementary results to the evaluation of possible anthropogenic climate change. NorESM1-M is based on the model CCSM4 operated at NCAR, but the ocean model is replaced by a modified version of MICOM and the atmospheric model is extended with online calculations of aerosols, their direct effect and their indirect effect on warm clouds. Model validation is presented in the companion paper (Bentsen et al., 2012). NorESM1-M is estimated to have equilibrium climate sensitivity of ca. 2.9 K and a transient climate response of ca. 1.4 K. This sensitivity is in the lower range amongst the models contributing to CMIP5. Cloud feedbacks dampen the response, and a strong AMOC reduces the heat fraction available for increasing near-surface temperatures, for evaporation and for melting ice. The future projections based on RCP scenarios yield a global surface air temperature increase of almost one standard deviation lower than a 15-model average. Summer sea-ice is projected to decrease considerably by 2100 and disappear completely for RCP8.5. The AMOC is projected to decrease by 12%, 15–17%, and 32% for the RCP2.6, 4.5, 6.0, and 8.5, respectively. Precipitation is projected to increase in the tropics, decrease in the subtropics and in southern parts of the northern extra-tropics during summer, and otherwise increase in most of the extra-tropics. Changes in the atmospheric water cycle indicate that precipitation events over continents will become more intense and dry spells more frequent. Extra-tropical storminess in the Northern Hemisphere is projected to shift northwards. There are indications of more frequent occurrence of spring and summer blocking in the Euro-Atlantic sector, while the amplitude of ENSO events weakens although they tend to appear more frequently. These indications are uncertain because of biases in the model's representation of present-day conditions. Positive phase PNA and negative phase NAO both appear less frequently under the RCP8.5 scenario, but also this result is considered uncertain. Single-forcing experiments indicate that aerosols and greenhouse gases produce similar geographical patterns of response for near-surface temperature and precipitation. These patterns tend to have opposite signs, although with important exceptions for precipitation at low latitudes. The asymmetric aerosol effects between the two hemispheres lead to a southward displacement of ITCZ. Both forcing agents, thus, tend to reduce Northern Hemispheric subtropical precipitation.


2018 ◽  
Author(s):  
Chuncheng Guo ◽  
Mats Bentsen ◽  
Ingo Bethke ◽  
Mehmet Ilicak ◽  
Jerry Tjiputra ◽  
...  

Abstract. A new computationally efficient version of the Norwegian Earth System Model (NorESM) is presented. This new version (here termed NorESM1-F) runs about 2.5 times faster (e.g. 90 model years per day on current hardware) than the version that contributed to the fifth phase of the Coupled Model Intercomparison project (CMIP5), i.e., NorESM1-M, and is therefore particularly suitable for multi-millennial paleoclimate and carbon cycle simulations or large ensemble simulations. The speedup is primarily a result of using a prescribed atmosphere aerosol chemistry and a tripolar ocean-sea ice horizontal grid configuration that allows an increase of the ocean-sea ice component time steps. Ocean biogeochemistry can be activated for fully coupled and semi-coupled carbon cycle applications. This paper describes the model and evaluates its performance using observations and NorESM1-M as benchmarks. The evaluation emphasises model stability, important large-scale features in the ocean and sea ice components, internal variability in the coupled system, and climate sensitivity. Simulation results from NorESM1-F in general agree well with observational estimates, and show evident improvements over NorESM1-M, for example, in the strength of the meridional overturning circulation and sea ice simulation, both important metrics in simulating past and future climates. Whereas NorESM1-M showed a slight global cool bias in the upper oceans, NorESM1-F exhibits a global warm bias. In general, however, NorESM1-F has more similarities than dissimilarities compared to NorESM1-M, and some biases and deficiencies known in NorESM1-M remain.


2019 ◽  
Vol 12 (1) ◽  
pp. 343-362 ◽  
Author(s):  
Chuncheng Guo ◽  
Mats Bentsen ◽  
Ingo Bethke ◽  
Mehmet Ilicak ◽  
Jerry Tjiputra ◽  
...  

Abstract. A new computationally efficient version of the Norwegian Earth System Model (NorESM) is presented. This new version (here termed NorESM1-F) runs about 2.5 times faster (e.g., 90 model years per day on current hardware) than the version that contributed to the fifth phase of the Coupled Model Intercomparison project (CMIP5), i.e., NorESM1-M, and is therefore particularly suitable for multimillennial paleoclimate and carbon cycle simulations or large ensemble simulations. The speed-up is primarily a result of using a prescribed atmosphere aerosol chemistry and a tripolar ocean–sea ice horizontal grid configuration that allows an increase of the ocean–sea ice component time steps. Ocean biogeochemistry can be activated for fully coupled and semi-coupled carbon cycle applications. This paper describes the model and evaluates its performance using observations and NorESM1-M as benchmarks. The evaluation emphasizes model stability, important large-scale features in the ocean and sea ice components, internal variability in the coupled system, and climate sensitivity. Simulation results from NorESM1-F in general agree well with observational estimates and show evident improvements over NorESM1-M, for example, in the strength of the meridional overturning circulation and sea ice simulation, both important metrics in simulating past and future climates. Whereas NorESM1-M showed a slight global cool bias in the upper oceans, NorESM1-F exhibits a global warm bias. In general, however, NorESM1-F has more similarities than dissimilarities compared to NorESM1-M, and some biases and deficiencies known in NorESM1-M remain.


2010 ◽  
Vol 3 (1) ◽  
pp. 123-141 ◽  
Author(s):  
J. F. Tjiputra ◽  
K. Assmann ◽  
M. Bentsen ◽  
I. Bethke ◽  
O. H. Otterå ◽  
...  

Abstract. We developed a complex Earth system model by coupling terrestrial and oceanic carbon cycle components into the Bergen Climate Model. For this study, we have generated two model simulations (one with climate change inclusions and the other without) to study the large scale climate and carbon cycle variability as well as its feedback for the period 1850–2100. The simulations are performed based on historical and future IPCC CO2 emission scenarios. Globally, a pronounced positive climate-carbon cycle feedback is simulated by the terrestrial carbon cycle model, but smaller signals are shown by the oceanic counterpart. Over land, the regional climate-carbon cycle feedback is highlighted by increased soil respiration, which exceeds the enhanced production due to the atmospheric CO2 fertilization effect, in the equatorial and northern hemisphere mid-latitude regions. For the ocean, our analysis indicates that there are substantial temporal and spatial variations in climate impact on the air-sea CO2 fluxes. This implies feedback mechanisms act inhomogeneously in different ocean regions. In the North Atlantic subpolar gyre, the simulated future cooling of SST improves the CO2 gas solubility in seawater and, hence, reduces the strength of positive climate carbon cycle feedback in this region. In most ocean regions, the changes in the Revelle factor is dominated by changes in surface pCO2, and not by the warming of SST. Therefore, the solubility-associated positive feedback is more prominent than the buffer capacity feedback. In our climate change simulation, the retreat of Southern Ocean sea ice due to melting allows an additional ~20 Pg C uptake as compared to the simulation without climate change.


2013 ◽  
Vol 6 (2) ◽  
pp. 477-494 ◽  
Author(s):  
K. Matsumoto ◽  
K. Tokos ◽  
A. Huston ◽  
H. Joy-Warren

Abstract. Here we describe the second version of Minnesota Earth System Model for Ocean biogeochemistry (MESMO 2), an earth system model of intermediate complexity, which consists of a dynamical ocean, dynamic-thermodynamic sea ice, and energy moisture balanced atmosphere. The new version has more realistic land ice masks and is driven by seasonal winds. A major aim in version 2 is representing the marine silica cycle mechanistically in order to investigate climate-carbon feedbacks involving diatoms, a critically important class of phytoplankton in terms of carbon export production. This is achieved in part by including iron, on which phytoplankton uptake of silicic acid depends. Also, MESMO 2 is coupled to an existing terrestrial model, which allows for the exchange of carbon, water and energy between land and the atmosphere. The coupled model, called MESMO 2E, is appropriate for more complete earth system simulations. The new version was calibrated, with the goal of preserving reasonable interior ocean ventilation and various biological production rates in the ocean and land, while simulating key features of the marine silica cycle.


2012 ◽  
Vol 5 (3) ◽  
pp. 2527-2569 ◽  
Author(s):  
T. Sueyoshi ◽  
R. Ohgaito ◽  
A. Yamamoto ◽  
M. O. Chikamoto ◽  
T. Hajima ◽  
...  

Abstract. The importance of climate model evaluation using paleoclimate simulations for better future climate projections has been recognized by the Intergovernmental Panel on Climate Change. In recent years, Earth System Models (ESMs) were developed to investigate carbon-cycle climate feedback, as well as to project the future climate. Paleoclimate events, especially those associated with the variations in atmospheric CO2 level or land vegetation, provide suitable benchmarks to evaluate ESMs. Here we present implementations of the paleoclimate experiments proposed by the Coupled Model Intercomparison Project phase 5/Paleoclimate Modelling Intercomparison Project phase 3 (CMIP5/PMIP3) using an Earth System Model, MIROC-ESM. In this paper, experimental settings and procedures of the mid-Holocene, the Last Glacial Maximum, and the Last Millennium experiments are explained. The first two experiments are time slice experiments and the last one is a transient experiment. The complexity of the model requires various steps to correctly configure the experiments. Several basic outputs are also shown.


Sign in / Sign up

Export Citation Format

Share Document