scholarly journals Setup of the PMIP3 paleoclimate experiments conducted using an Earth System Model, MIROC-ESM

2012 ◽  
Vol 5 (3) ◽  
pp. 2527-2569 ◽  
Author(s):  
T. Sueyoshi ◽  
R. Ohgaito ◽  
A. Yamamoto ◽  
M. O. Chikamoto ◽  
T. Hajima ◽  
...  

Abstract. The importance of climate model evaluation using paleoclimate simulations for better future climate projections has been recognized by the Intergovernmental Panel on Climate Change. In recent years, Earth System Models (ESMs) were developed to investigate carbon-cycle climate feedback, as well as to project the future climate. Paleoclimate events, especially those associated with the variations in atmospheric CO2 level or land vegetation, provide suitable benchmarks to evaluate ESMs. Here we present implementations of the paleoclimate experiments proposed by the Coupled Model Intercomparison Project phase 5/Paleoclimate Modelling Intercomparison Project phase 3 (CMIP5/PMIP3) using an Earth System Model, MIROC-ESM. In this paper, experimental settings and procedures of the mid-Holocene, the Last Glacial Maximum, and the Last Millennium experiments are explained. The first two experiments are time slice experiments and the last one is a transient experiment. The complexity of the model requires various steps to correctly configure the experiments. Several basic outputs are also shown.

2020 ◽  
Author(s):  
Fulden Batıbeniz ◽  
Barış Önol ◽  
Ufuk Utku Turuncoglu

<p>Tropical-like Mediterranean storms associated with strong winds, low pressure centers and extreme precipitation are called medicanes. These devastating storms threaten the coastal regions and some small islands in the Mediterranean. Recent studies including future climate projections indicate that the intensity of medicanes could increase under the climate change conditions. Therefore it is important to improve a comprehensive understanding of the medicanes and theirs occurrence processes including thermodynamic mechanisms between the atmosphere and the sea. In pursuing these mechanisms, we use reanalysis/observations (ECMWF’s ERA5 and MyOCEAN etc.) and coupled Regional Earth System Model (RegESM). The RegESM model is run in coupled mode (Regional Climate Model-RegCM4-12km coupled with Regional Ocean Modelling System-ROMS-1/12<sup>°</sup>, and Wave Model-WAM-0.125<sup>°</sup>) and uncoupled mode (RegCM4 only-12km) for 1979-2012 period over the Med-CORDEX domain prescribed under the CORDEX framework. Additionally, standalone simulation of RegCM4 has been forced by Era-Interim Reanalysis over the Med-CORDEX domain and the standalone simulation of the wave model (WAM) has been forced by the standalone RegCM4 wind field (12 km horizontal resolution) for the Mediterranean Sea.</p><p>We analyze the ability of the coupled and uncoupled models to reproduce the characteristics of the observed medicanes and to investigate the role of air-sea interaction in the simulation of key processes that govern medicane occurrences over the study area. In general, the spatial extent and the timing of the observed medicanes better simulated with the coupled model. The reason behind this better replication with the coupled model is the wave model’s interactive contribution with the roughness length to the surface winds, which allows necessary conditions for medicane formation. Our results also reveals that the recently developed modeling system RegESM incorporates atmosphere, ocean and wave components and thereby is better capable to improve the understanding of the mechanisms driving medicanes.</p><p><strong>Keywords </strong>Regional earth system model, Ocean-atmosphere-wave coupling, Medicanes</p><p><strong>Acknowledgements</strong> This study has been supported by a research grant 40248 by the Scientific Research Projects Coordination Unit of Istanbul Technical University (ITU) and  a research grant (116Y136) provided by The Scientific and Technological Research Council of Turkey (TUBITAK). The computing resources used in this work were provided by the National Center for High Performance Computing of Turkey (UHEM) under grant number 5004782017.</p>


2012 ◽  
Vol 5 (3) ◽  
pp. 2811-2842 ◽  
Author(s):  
M. A. Chandler ◽  
L. E. Sohl ◽  
J. A. Jonas ◽  
H. J. Dowsett

Abstract. Climate reconstructions of the mid-Pliocene Warm Period (mPWP) bear many similarities to aspects of future global warming as projected by the Intergovernmental Panel on Climate Change. In particular, marine and terrestrial paleoclimate data point to high latitude temperature amplification, with associated decreases in sea ice and land ice and altered vegetation distributions that show expansion of warmer climate biomes into higher latitudes. NASA GISS climate models have been used to study the Pliocene climate since the USGS PRISM project first identified that the mid-Pliocene North Atlantic sea surface temperatures were anomalously warm. Here we present the most recent simulations of the Pliocene using the AR5/CMIP5 version of the GISS Earth System Model known as ModelE2-R. These simulations constitute the NASA contribution to the Pliocene Model Intercomparison Project (PlioMIP) Experiment 2. Many findings presented here corroborate results from other PlioMIP multi-model ensemble papers, but we also emphasize features in the ModelE2-R simulations that are unlike the ensemble means. We provide discussion of features that show considerable improvement compared with simulations from previous versions of the NASA GISS models, improvement defined here as simulation results that more closely resemble the ocean core data as well as the PRISM3D reconstructions of the mid-Pliocene climate. In some regions even qualitative agreement between model results and paleodata are an improvement over past studies, but the dramatic warming in the North Atlantic and Greenland-Iceland-Norwegian Sea in these new simulations is by far the most accurate portrayal ever of this key geographic region by the GISS climate model. Our belief is that continued development of key physical routines in the atmospheric model, along with higher resolution and recent corrections to mixing parameterizations in the ocean model, have led to an Earth System Model that will produce more accurate projections of future climate.


2021 ◽  
Author(s):  
Ralf Döscher ◽  
Mario Acosta ◽  
Andrea Alessandri ◽  
Peter Anthoni ◽  
Almut Arneth ◽  
...  

Abstract. The Earth System Model EC-Earth3 for contributions to CMIP6 is documented here, with its flexible coupling framework, major model configurations, a methodology for ensuring the simulations are comparable across different HPC systems, and with the physical performance of base configurations over the historical period. The variety of possible configurations and sub-models reflects the broad interests in the EC-Earth community. EC-Earth3 key performance metrics demonstrate physical behaviour and biases well within the frame known from recent CMIP models. With improved physical and dynamic features, new ESM components, community tools, and largely improved physical performance compared to the CMIP5 version, EC-Earth3 represents a clear step forward for the only European community ESM. We demonstrate here that EC-Earth3 is suited for a range of tasks in CMIP6 and beyond.


2018 ◽  
Vol 33 (6) ◽  
pp. 325-331
Author(s):  
Ilya A. Chernov ◽  
Nikolay G. Iakovlev

Abstract In the present paper we consider the first results of modelling the World Ocean biogeochemistry system within the framework of the Earth system model: a global atmosphere-ocean-ice-land-biogeochemistry model. It is based on the INMCM climate model (version INMCM39) coupled with the pelagic ecosystem model BFM. The horizontal resolution was relatively low: 2∘ × 2.5∘ for the ‘longitude’ and ‘latitude’ in transformed coordinates with the North Pole moved to land, 33 non-equidistant σ-horizons, 1 hour time step. We have taken into account 54 main rivers worldwide with run–off supplied by the atmosphere submodel. The setup includes nine plankton groups, 60 tracers in total. Some components sink with variable speed. We discuss challenges of coupling the BFM with the σ-coordinate ocean model. The presented results prove that the model output is realistic in comparison with the observed data, the numerical efficiency is high enough, and the coupled model may serve as a basis for further simulations of the long-term climate change.


2012 ◽  
Vol 8 (4) ◽  
pp. 3277-3343 ◽  
Author(s):  
R. Ohgaito ◽  
T. Sueyoshi ◽  
A. Abe-Ouchi ◽  
T. Hajima ◽  
S. Watanabe ◽  
...  

Abstract. The importance of evaluating models using paleoclimate simulations is becoming more recognized in efforts to improve climate projection. To evaluate an integrated Earth System Model, MIROC-ESM, we performed simulations in time-slice experiments for the mid-Holocene (6000 yr before present, 6 ka) and preindustrial (1850 AD) times under the protocol of the Coupled Model Intercomparison Project 5/Paleoclimate Modelling Intercomparison Project 3. We first overview the simulated global climates by comparing with simulations using a previous version of the MIROC model (MIROC3), which is an atmosphere-ocean coupled general circulation model, and then comprehensively discuss various aspects of climate change with 6 ka forcing. We also discuss the 6 ka African monsoon activity. The 6 ka precipitation change over northern Africa according to MIROC-ESM does not differ dramatically from that obtained with MIROC3, which means that newly developed components such as dynamic vegetation and improvements in the atmospheric processes do not have significant impacts on representing the 6 ka monsoon change suggested by proxy records. Although there is no drastic difference in the African monsoon representation between the two models, there are small but significant differences in the precipitation enhancement in MIROC-ESM, which can be related to the representation of the sea surface temperature rather than the vegetation coupling, at least in MIROC-ESM.


2019 ◽  
Author(s):  
Takasumi Kurahashi-Nakamura ◽  
André Paul ◽  
Guy Munhoven ◽  
Ute Merkel ◽  
Michael Schulz

Abstract. We developed a coupling scheme for the Community Earth System Model version 1.2 (CESM1.2) and the Model of Early Diagenesis in the Upper Sediment of Adjustable complexity (MEDUSA), and explored the effects of the coupling on solid components in the upper sediment and on bottom seawater chemistry by comparing the coupled model's behaviour with that of the uncoupled CESM having a simplified treatment of sediment processes. CESM is a fully-coupled atmosphere-ocean-sea ice-land model and its ocean component (the Parallel Ocean Program version 2, POP2) includes a biogeochemical component (BEC). MEDUSA was coupled to POP2 in an off-line manner so that each of the models ran separately and sequentially with regular exchanges of necessary boundary condition fields. This development was done with the ambitious aim of a future application for long-term (spanning a full glacial cycle; i.e., ~ 105 years) climate simulations with a state-of-the-art comprehensive climate model including the carbon cycle, and was motivated by the fact that until now such simulations have been done only with less-complex climate models. We found that the sediment-model coupling already had non-negligible immediate advantages for ocean biogeochemistry in millennial-time-scale simulations. First, the MEDUSA-coupled CESM outperformed the uncoupled CESM in reproducing an observation-based global distribution of sediment properties, especially for organic carbon and opal. Thus, the coupled model is expected to act as a better bridge between climate dynamics and sedimentary data, which will provide another measure of model performance. Second, in our experiments, the MEDUSA-coupled model and the uncoupled model had a difference of 0.2‰ or larger in terms of δ13C of bottom water over large areas, which implied potential significant model biases for bottom seawater chemical composition due to a different way of sediment treatment. Such a model bias would be a fundamental issue for paleo model–data comparison often relying on data derived from benthic foraminifera.


2011 ◽  
Vol 4 (4) ◽  
pp. 1051-1075 ◽  
Author(s):  
W. J. Collins ◽  
N. Bellouin ◽  
M. Doutriaux-Boucher ◽  
N. Gedney ◽  
P. Halloran ◽  
...  

Abstract. We describe here the development and evaluation of an Earth system model suitable for centennial-scale climate prediction. The principal new components added to the physical climate model are the terrestrial and ocean ecosystems and gas-phase tropospheric chemistry, along with their coupled interactions. The individual Earth system components are described briefly and the relevant interactions between the components are explained. Because the multiple interactions could lead to unstable feedbacks, we go through a careful process of model spin up to ensure that all components are stable and the interactions balanced. This spun-up configuration is evaluated against observed data for the Earth system components and is generally found to perform very satisfactorily. The reason for the evaluation phase is that the model is to be used for the core climate simulations carried out by the Met Office Hadley Centre for the Coupled Model Intercomparison Project (CMIP5), so it is essential that addition of the extra complexity does not detract substantially from its climate performance. Localised changes in some specific meteorological variables can be identified, but the impacts on the overall simulation of present day climate are slight. This model is proving valuable both for climate predictions, and for investigating the strengths of biogeochemical feedbacks.


2014 ◽  
Vol 27 (11) ◽  
pp. 3920-3937 ◽  
Author(s):  
Liang Chen ◽  
Oliver W. Frauenfeld

Abstract Historical temperature variability over China during the twentieth century and projected changes under three emission scenarios for the twenty-first century are evaluated on the basis of a multimodel ensemble of 20 GCMs from phase 5 of the Coupled Model Intercomparison Project (CMIP5) and two observational datasets. Changes relative to phase 3 of the Coupled Model Intercomparison Project (CMIP3) are assessed, and the performance of individual GCMs is also quantified. Compared with observations, GCMs have substantial cold biases over the Tibetan Plateau, especially in the cold season. The timing and location of these biases also correspond to the greatest disagreement among the individual models, indicating GCMs’ limitations in reproducing climatic features in this complex terrain. The CMIP5 multimodel ensemble shows better agreement with observations than CMIP3 in terms of the temperature biases. Both CMIP3 and CMIP5 capture the climatic warming over the twentieth century. However, the magnitude of the annual mean temperature trends is underestimated. There is also limited agreement in the spatial and seasonal patterns of temperature trends over China. Based on six statistical measures, four individual models—the Max Planck Institute Earth System Model, low resolution (MPI-ESM-LR), Second Generation Canadian Earth System Model (CanESM2), Model for Interdisciplinary Research on Climate, Earth System Model (MIROC-ESM), and Community Climate System Model, version 4 (CCSM4)—best represent surface air temperature variability over China. The future temperature projections indicate that the representative concentration pathway (RCP) 8.5 and RCP 4.5 scenarios exhibit a gradual increase in annual temperature during the twenty-first century at a rate of 0.60° and 0.27°C (10 yr)−1, respectively. As the lowest-emission mitigation scenario, RCP 2.6 projects the lowest rate of temperature increase [0.10°C (10 yr)−1]. By the end of the twenty-first century, temperature is projected to increase by 1.7°–5.7°C, with larger warming over northern China and the Tibetan Plateau.


2011 ◽  
Vol 4 (2) ◽  
pp. 997-1062 ◽  
Author(s):  
W. J. Collins ◽  
N. Bellouin ◽  
M. Doutriaux-Boucher ◽  
N. Gedney ◽  
P. Halloran ◽  
...  

Abstract. We describe here the development and evaluation of an Earth system model suitable for centennial-scale climate prediction. The principal new components added to the physical climate model are the terrestrial and ocean ecosystems and gas-phase tropospheric chemistry, along with their coupled interactions. The individual Earth system components are described briefly and the relevant interactions between the components are explained. Because the multiple interactions could lead to unstable feedbacks, we go through a careful process of model spin up to ensure that all components are stable and the interactions balanced. This spun-up configuration is evaluated against observed data for the Earth system components and is generally found to perform very satisfactorily. The reason for the evaluation phase is that the model is to be used for the core climate simulations carried out by the Met Office Hadley Centre for the Coupled Model Intercomparison Project (CMIP5), so it is essential that addition of the extra complexity does not detract substantially from its climate performance. Localised changes in some specific meteorological variables can be identified, but the impacts on the overall simulation of present day climate are slight. This model is proving valuable both for climate predictions, and for investigating the strengths of biogeochemical feedbacks.


2020 ◽  
Author(s):  
Øyvind Seland ◽  
Mats Bentsen ◽  
Lise Seland Graff ◽  
Dirk Olivié ◽  
Thomas Toniazzo ◽  
...  

Abstract. The second version of the fully coupled Norwegian Earth System Model (NorESM2) is presented and evaluated. NorESM2 is based on the second version of the Community Earth System Model (CESM2), but has entirely different ocean and ocean biogeochemistry models; a new module for aerosols in the atmosphere model along with aerosol-radiation-cloud interactions and changes related to the moist energy formulation, deep convection scheme and angular momentum conservation; modified albedo and air-sea turbulent flux calculations; and minor changes to land and sea ice models. We show results from low (∼2°) and medium (∼1°) atmosphere-land resolution versions of NorESM2 that have both been used to carry out simulations for the sixth phase of the Coupled Model Intercomparison Project (CMIP6). The stability of the pre-industrial climate and the sensitivity of the model to abrupt and gradual quadrupling of CO2 is assessed, along with the ability of the model to simulate the historical climate under the CMIP6 forcings. As compared to observations and reanalyses, NorESM2 represents an improvement over previous versions of NorESM in most aspects. NorESM2 is less sensitive to greenhouse gas forcing than its predecessors, with an equilibrium climate sensitivity of 2.5 K in both resolutions on a 150 year frame. We also consider the model response to future scenarios as defined by selected shared socioeconomic pathways (SSP) from the Scenario Model Intercomparison Project defined under CMIP6. Under the four scenarios SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5, the warming in the period 2090–2099 compared to 1850–1879 reaches 1.3, 2.2, 3.0, and 3.9 K in NorESM2-LM, and 1.3, 2.1, 3.1, and 3.9 K in NorESM–MM, robustly similar in both resolutions. NorESM2-LM shows a rather satisfactorily evolution of recent sea ice area. In NorESM2-LM an ice free Arctic Ocean is only avoided in the SSP1-2.6 scenario.


Sign in / Sign up

Export Citation Format

Share Document