scholarly journals A model-independent data assimilation (MIDA) module and its applications in ecology

2021 ◽  
Vol 14 (8) ◽  
pp. 5217-5238
Author(s):  
Xin Huang ◽  
Dan Lu ◽  
Daniel M. Ricciuto ◽  
Paul J. Hanson ◽  
Andrew D. Richardson ◽  
...  

Abstract. Models are an important tool to predict Earth system dynamics. An accurate prediction of future states of ecosystems depends on not only model structures but also parameterizations. Model parameters can be constrained by data assimilation. However, applications of data assimilation to ecology are restricted by highly technical requirements such as model-dependent coding. To alleviate this technical burden, we developed a model-independent data assimilation (MIDA) module. MIDA works in three steps including data preparation, execution of data assimilation, and visualization. The first step prepares prior ranges of parameter values, a defined number of iterations, and directory paths to access files of observations and models. The execution step calibrates parameter values to best fit the observations and estimates the parameter posterior distributions. The final step automatically visualizes the calibration performance and posterior distributions. MIDA is model independent, and modelers can use MIDA for an accurate and efficient data assimilation in a simple and interactive way without modification of their original models. We applied MIDA to four types of ecological models: the data assimilation linked ecosystem carbon (DALEC) model, a surrogate-based energy exascale earth system model: the land component (ELM), nine phenological models and a stand-alone biome ecological strategy simulator (BiomeE). The applications indicate that MIDA can effectively solve data assimilation problems for different ecological models. Additionally, the easy implementation and model-independent feature of MIDA breaks the technical barrier of applications of data–model fusion in ecology. MIDA facilitates the assimilation of various observations into models for uncertainty reduction in ecological modeling and forecasting.

2021 ◽  
Author(s):  
Xin Huang ◽  
Dan Lu ◽  
Daniel M. Ricciuto ◽  
Paul J. Hanson ◽  
Andrew D. Richardson ◽  
...  

Abstract. Models are an important tool to predict Earth system dynamics. An accurate prediction of future states depends on not only model structures but also parameterizations. Model parameters can be constrained by data assimilation. However, applications of data assimilation to ecology are restricted by highly technical requirements such as model-dependent coding. To alleviate this technical burden, we developed a model-independent data assimilation (MIDA) module. MIDA works in three steps including data preparation, execution of data assimilation, and visualization. The first step prepares prior ranges of parameter values, a defined number of iterations, and directory paths to access files of observations and models. The execution step calibrates parameter values to best fit the observations and estimates the parameter posterior distributions. The final step automatically visualizes the calibration performance and posterior distributions. MIDA is model independent and modelers can use MIDA for an accurate and efficient data assimilation in a simple and interactive way without modification of their original models. We applied MIDA to four types of ecological models: the data assimilation linked ecosystem carbon (DALEC) model, a surrogate-based energy exascale earth system model the land component (ELM), nine phenological models and a stand-alone biome ecological strategy simulator (BiomeE). The applications indicate that MIDA can effectively solve data assimilation problems for different ecological models. Additionally, the easy implementation and model-independent feature of MIDA breaks the technical barrier of black-box applications of data-model fusion in ecology. MIDA facilitates the assimilation of various observations into models for uncertainty reduction in ecological modeling and forecasting.


Author(s):  
Matthew J. Hoffman ◽  
Elizabeth M. Cherry

Modelling of cardiac electrical behaviour has led to important mechanistic insights, but important challenges, including uncertainty in model formulations and parameter values, make it difficult to obtain quantitatively accurate results. An alternative approach is combining models with observations from experiments to produce a data-informed reconstruction of system states over time. Here, we extend our earlier data-assimilation studies using an ensemble Kalman filter to reconstruct a three-dimensional time series of states with complex spatio-temporal dynamics using only surface observations of voltage. We consider the effects of several algorithmic and model parameters on the accuracy of reconstructions of known scroll-wave truth states using synthetic observations. In particular, we study the algorithm’s sensitivity to parameters governing different parts of the process and its robustness to several model-error conditions. We find that the algorithm can achieve an acceptable level of error in many cases, with the weakest performance occurring for model-error cases and more extreme parameter regimes with more complex dynamics. Analysis of the poorest-performing cases indicates an initial decrease in error followed by an increase when the ensemble spread is reduced. Our results suggest avenues for further improvement through increasing ensemble spread by incorporating additive inflation or using a parameter or multi-model ensemble. This article is part of the theme issue ‘Uncertainty quantification in cardiac and cardiovascular modelling and simulation’.


2013 ◽  
Vol 16 (2) ◽  
pp. 392-406 ◽  
Author(s):  
Gift Dumedah ◽  
Paulin Coulibaly

Data assimilation has allowed hydrologists to account for imperfections in observations and uncertainties in model estimates. Typically, updated members are determined as a compromised merger between observations and model predictions. The merging procedure is conducted in decision space before model parameters are updated to reflect the assimilation. However, given the dynamics between states and model parameters, there is limited guarantee that when updated parameters are applied into measurement models, the resulting estimate will be the same as the updated estimate. To account for these challenges, this study uses evolutionary data assimilation (EDA) to estimate streamflow in gauged and ungauged watersheds. EDA assimilates daily streamflow into a Sacramento soil moisture accounting model to determine updated members for eight watersheds in southern Ontario, Canada. The updated members are combined to estimate streamflow in ungauged watersheds where the results show high estimation accuracy for gauged and ungauged watersheds. An evaluation of the commonalities in model parameter values across and between gauged and ungauged watersheds underscore the critical contributions of consistent model parameter values. The findings show a high degree of commonality in model parameter values such that members of a given gauged/ungauged watershed can be estimated using members from another watershed.


2017 ◽  
Vol 14 (6) ◽  
pp. 1647-1701 ◽  
Author(s):  
Markus Schartau ◽  
Philip Wallhead ◽  
John Hemmings ◽  
Ulrike Löptien ◽  
Iris Kriest ◽  
...  

Abstract. To describe the underlying processes involved in oceanic plankton dynamics is crucial for the determination of energy and mass flux through an ecosystem and for the estimation of biogeochemical element cycling. Many planktonic ecosystem models were developed to resolve major processes so that flux estimates can be derived from numerical simulations. These results depend on the type and number of parameterizations incorporated as model equations. Furthermore, the values assigned to respective parameters specify a model's solution. Representative model results are those that can explain data; therefore, data assimilation methods are utilized to yield optimal estimates of parameter values while fitting model results to match data. Central difficulties are (1) planktonic ecosystem models are imperfect and (2) data are often too sparse to constrain all model parameters. In this review we explore how problems in parameter identification are approached in marine planktonic ecosystem modelling. We provide background information about model uncertainties and estimation methods, and how these are considered for assessing misfits between observations and model results. We explain differences in evaluating uncertainties in parameter estimation, thereby also discussing issues of parameter identifiability. Aspects of model complexity are addressed and we describe how results from cross-validation studies provide much insight in this respect. Moreover, approaches are discussed that consider time- and space-dependent parameter values. We further discuss the use of dynamical/statistical emulator approaches, and we elucidate issues of parameter identification in global biogeochemical models. Our review discloses many facets of parameter identification, as we found many commonalities between the objectives of different approaches, but scientific insight differed between studies. To learn more from results of planktonic ecosystem models we recommend finding a good balance in the level of sophistication between mechanistic modelling and statistical data assimilation treatment for parameter estimation.


2021 ◽  
Author(s):  
Tarkeshwar Singh ◽  
Francois Counillon ◽  
Jerry F. Tjiputra ◽  
Mohamad El Gharamti

<p>Ocean biogeochemical (BGC) models utilize a large number of poorly-constrained global parameters to mimic unresolved processes and reproduce the observed complex spatio-temporal patterns. Large model errors stem primarily from inaccuracies in these parameters whose optimal values can vary both in space and time. This study aims to demonstrate the ability of ensemble data assimilation (DA) methods to provide high-quality and improved BGC parameters within an Earth system model in idealized twin experiment framework.  We use the Norwegian Climate Prediction Model (NorCPM), which combines the Norwegian Earth System Model with the Dual-One-Step ahead smoothing-based Ensemble Kalman Filter (DOSA-EnKF). The work follows on Gharamti et al. (2017) that successfully demonstrates the approach for one-dimensional idealized ocean BGC models. We aim to estimate five spatially varying BGC parameters by assimilating Salinity and Temperature hydrographic profiles and surface BGC (Phytoplankton, Nitrate, Phosphorous, Silicate, and Oxygen) observations in a strongly coupled DA framework – i.e., jointly updating ocean and BGC state-parameters during the assimilation. The method converges quickly (less than a year), largely reducing the errors in the BGC parameters and eventually it is shown to perform nearly as well as that of the system with true parameter values. Optimal parameter values can also be recovered by assimilating climatological BGC observations and challenging sparse observational networks. The findings of this study demonstrate the applicability of the approach for tuning the system in a real framework.</p><p> </p><p><strong>References</strong>:</p><p>Gharamti, M. E., Tjiputra, J., Bethke, I., Samuelsen, A., Skjelvan, I., Bentsen, M., & Bertino, L. (2017). Ensemble data assimilation for ocean biogeochemical state and parameter estimation at different sites. Ocean Modelling, 112, 65-89.</p>


2021 ◽  
Author(s):  
Léonard Santos ◽  
Jafet C. M. Andersson ◽  
Berit Arheimer

<p>When setting up global scale hydrological models, parameter estimation is a crucial step. Some modellers assign pre-defined parameter values to physical characteristics (such as soil, land cover, etc.) while others estimate parameter values based on observed hydrological data. In both cases, the regionalisation of parameters is a major challenge since both literature values and observed data are often lacking and assumptions are needed. This work aims at identifying suitable parameter regions to perform a regional calibration of the global model World-Wide HYPE (Arheimer et al., 2020) through empirical tests.<br>The work is organised in two steps. First we compare different ways of taking soil into account when creating hydrological response units. The soil is either considered uniform, indexed to land use or to a simplified soil map. The best soil representation is selected based on the model performance at a global scale. Based on this best representation, the second step aims at evaluating different ways to regionalise the soil parameters of the hydrological model.  Previous classifications of hydrological uniform regions are tested for regionalisation of model parameters: hydrobelts (Meybeck et al., 2013), Köppen climate regions (Kottek et al., 2006), soil capacity index (Wang-Erlandsson et al., 2016) and hydroclimatic regions (Knoben et al., 2018).<br>For the first step, the results show that the best solution is to represent soil by land use. This counterintuitive result is due to the fact that adding information based on a soil map add another calibration step. To avoid increased equifinality, such an effort increases the need for data, which is often lacking at the global scale.  For the second step, the creation of parameter regions contributed with minor improvement in terms of model performances, probably because the choice of regions was not suitable for the model approach. Also, the improvement has shown to be higher when available discharge data for calibration were better distributed over the different regions. This work shows that, when calibrating a model at very large scale, a balance should be found between available data and parameter regions resolution. </p><p><br><strong>References</strong><br>Arheimer, B., Pimentel, R., Isberg, K., Crochemore, L., Andersson, J. C. M., Hasan, A., and Pineda, L.: Global catchment modelling using World-Wide HYPE (WWH), open data and stepwise parameter estimation, Hydrol. Earth Syst. Sci. 24, 535–559, 2020.<br>Knoben, W. J., Woods, R. A., and Freer, J. E.: A Quantitative Hydrological Climate Classification Evaluated With Independent Streamflow Data. Water Resources Research, 54(7), 5088-5109, 2018.<br>Kottek, M., Grieser, J., Beck, C., Rudolf, B., and Rubel, F.: World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15, 259-263, 2006.<br>Meybeck, M., Kummu, M., and Dürr, H. H.: Global hydrobelts and hydroregions: improved reporting scale for waterrelated issues? Hydrology and Earth System Sciences, 17(3), 1093-1111, 2013.<br>Wang-Erlandsson, L., Bastiaanssen, W. G. M., Gao, H., Jägermeyr, J., Senay, G. B., van Dijk, A. I. J. M., Guerschman, J. P., Keys, P. W., Gordon, L. J., and Savenije, H. H. G.: Global root zone storage capacity from satellite-based evaporation, Hydrology Earth System Sciences, 20, 1459-1481, 2016.</p>


2017 ◽  
Author(s):  
R. Quinn Thomas ◽  
Evan Brooks ◽  
Annika Jersild ◽  
Eric Ward ◽  
Randolph Wynne ◽  
...  

Abstract. Predicting how forest carbon cycling will change in response to climate change and management depends on the collective knowledge from measurements across environmental gradients, ecosystem manipulations of global change factors, and mathematical models. Formally integrating these sources of knowledge through data assimilation, or model-data fusion, allows the use of past observations to constrain model parameters and estimate prediction uncertainty. However, the influence of different experimental treatments on those predictions depends on the exact methods and techniques used for data assimilation. Here, we introduce a hierarchical Bayesian DA approach (Data Assimilation of Pine Plantation Ecosystem Research, DAPPER) that uses observations of carbon stocks, carbon fluxes, water fluxes, and vegetation dynamics from loblolly pine plantation ecosystems across the Southeastern U.S. to constrain parameters in a modified version of the 3-PG forest growth model. The observations included major experiments that manipulated atmospheric carbon dioxide (CO2) concentration, water, and nutrients, along with non-experimental studies that spanned environmental gradients across an 8.6 × 105 km2 region. We optimized regionally representative posterior distributions for the most sensitive model parameters, which dependably predicted data from plots withheld from the data assimilation. The posterior distributions of parameters associated with ecosystem responses to CO2, precipitation, and nutrient addition, along with the corresponding regional changes in production associated with nutrient fertilization and drought, depended on how the experimental data were assimilated. In particular, assimilating nutrient addition experiments reduced the predicted sensitivity to nutrient fertilization while assimilated water manipulation experiments increased the sensitivity to drought. Further, it was necessary to assimilate data from the CO2 experimental enrichment site before other studies to constrain the parameters associated with the influence of CO2 on canopy photosynthesis. The ambient CO2 plots were numerous and had a large contribution to the cost function compared to the low number of elevated CO2 plots (289 ambient vs. 5 elevated plots). Overall, we demonstrated how three decades of research in southeastern U.S. planted pine forests can be used to develop data assimilation techniques that use multiple locations, multiple data streams, and multiple ecosystem experiment types to optimize parameters. This approach allows for future predictions to be consistent with a rich history of ecosystem research across a region.


2016 ◽  
Author(s):  
Markus Schartau ◽  
Philip Wallhead ◽  
John Hemmings ◽  
Ulrike Löptien ◽  
Iris Kriest ◽  
...  

Abstract. To describe the underlying processes involved in oceanic plankton dynamics is crucial for the determination of energy and mass flux through an ecosystem and for the estimation of biogeochemical element cycling. Many planktonic ecosystem models were developed to resolve major processes so that flux estimates can be derived from numerical simulations. These results depend on the type and number of parameterisations incorporated as model equations. Furthermore, the values assigned to respective parameters specify a model's solution. Representative model results are those that can explain data, therefore data assimilation methods are utilised to yield optimal estimates of parameter values while fitting model results to match data. Central difficulties are 1) planktonic ecosystem models are imperfect and 2) data are often too sparse to constrain all model parameters. In this review we explore how problems in parameter identification are approached in marine planktonic ecosystem modelling. We provide background information about model uncertainties and estimation methods, and how these are considered for assessing misfits between observations and model results. We explain differences in evaluating uncertainties in parameter estimation, thereby also addressing issues of parameter identifiability. Aspects of model complexity will be covered and we describe how results from cross-validation studies provide much insight in this respect. Moreover, we elucidate inferences made in studies that allowed for variations in space and time of parameter values. The usage of dynamical and statistical emulator approaches will be briefly explained, discussing their advantage for parameter optimisations of large-scale biogeochemical models. Our survey extends to studies that approached parameter identification in global biogeochemical modelling. Parameter estimation results will exemplify some of the advantages and remaining problems in optimising global biogeochemical models. Our review discloses many facets of parameter identification, as we found many commonalities between the objectives of different approaches, but scientific insight differed between studies. To learn more from results of planktonic ecosystem models we recommend finding a good balance in the level of sophistication between mechanistic modelling and statistical data assimilation treatment for parameter estimation.


2014 ◽  
Vol 15 (1) ◽  
pp. 359-375 ◽  
Author(s):  
Gift Dumedah ◽  
Jeffrey P. Walker

Abstract Data assimilation (DA) methods are commonly used for finding a compromise between imperfect observations and uncertain model predictions. The estimation of model states and parameters has been widely recognized, but the convergence of estimated parameters has not been thoroughly investigated. The distribution of model state and parameter values is closely linked to convergence, which in turn impacts the ultimate estimation accuracy of DA methods. This demonstration study examines the robustness and convergence of model parameters for the ensemble Kalman filter (EnKF) and the evolutionary data assimilation (EDA) in the context of the Soil Moisture and Ocean Salinity (SMOS) soil moisture assimilation into the Joint UK Land Environment Simulator in the Yanco area in southeast Australia. The results show high soil moisture estimation accuracy for the EnKF and EDA methods when compared with the open loop estimates during evaluation and validation stages. The level of convergence was quantified for each model parameter in the EDA approach to illustrate its potential in the retrieval of variables that were not directly observed. The EDA was found to have a higher estimation accuracy than the EnKF when its updated members were evaluated against the SMOS level 2 soil moisture. However, the EnKF and EDA estimations are comparable when their forward soil moisture estimates were validated against SMOS soil moisture outside the assimilation time period. This suggests that parameter convergence does not significantly influence soil moisture estimation accuracy for the EnKF. However, the EDA has the advantage of simultaneously determining the convergence of model parameters while providing comparably higher accuracy for soil moisture estimates.


Sign in / Sign up

Export Citation Format

Share Document