scholarly journals Topography-based local spherical Voronoi grid refinement on classical and moist shallow-water finite-volume models

2021 ◽  
Vol 14 (11) ◽  
pp. 6919-6944
Author(s):  
Luan F. Santos ◽  
Pedro S. Peixoto

Abstract. Locally refined grids for global atmospheric models are attractive since they are expected to provide an alternative to solve local phenomena without the requirement of a global high-resolution uniform grid, whose computational cost may be prohibitive. Spherical centroidal Voronoi tessellation (SCVT), as used in the atmospheric Model for Prediction Across Scales (MPAS), allows a flexible way to build and work with local refinement. In addition, the Andes Range plays a key role in the South American weather, but it is hard to capture its fine-structure dynamics in global models. This paper describes how to generate SCVT grids that are locally refined in South America and that also capture the sharp topography of the Andes Range by defining a density function based on topography and smoothing techniques. We investigate the use of the mimetic finite-volume scheme employed in the MPAS dynamical core on this grid considering the nonlinear classic and moist shallow-water equations on the sphere. We show that the local refinement, even with very smooth transitions from different resolutions, generates spurious numerical inertia–gravity waves that may even numerically destabilize the model. In the moist shallow-water model, wherein physical processes such as precipitation and cloud formation are included, our results show that the local refinement may generate spurious rain that is not observed in uniform-resolution SCVT grids. Fortunately, the spurious waves originate from small-scale grid-related numerical errors and can therefore be mitigated using fourth-order hyperdiffusion. We exploit a grid geometry-based hyperdiffusion that is able to stabilize spurious waves and has very little impact on the total energy conservation. We show that, in some cases, the clouds are better represented in a variable-resolution grid when compared to a respective uniform-resolution grid with the same number of cells, while in other cases, grid effects can affect the cloud and rain representation.

2021 ◽  
Author(s):  
Luan F. Santos ◽  
Pedro S. Peixoto

Abstract. Locally refined grids for global atmospheric models are attractive since they are expected to provide an alternative to solve local phenomena without the requirement of a global high-resolution uniform grid, whose computational cost may be prohibitive. The Spherical Centroidal Voronoi Tesselations (SCVT), as used in the atmospheric Model for Prediction Across Scales (MPAS), allows a flexible way to build and work with local refinement. Alongside, the Andes Range plays a key role in the South American weather, but it is hard to capture its fine structure dynamics in global models. This paper describes how to generate SCVT grids that are locally refined in South America and that also capture the sharp topography of the Andes Range by defining a density function based on topography and smoothing techniques. We investigate the use of the mimetic finite volume scheme employed in the MPAS dynamical core on this grid considering the non-linear classic and moist shallow-water equations on the sphere. We show that the local refinement, even with very smooth transitions from different resolutions, generates spurious numerical inertia-gravity waves that may even numerically de-stabilize the model. In the moist shallow-water model, where physical processes such as precipitation and cloud formation are included, our results show that the local refinement may generate spurious rain that is not observed in uniform resolution SCVT grids. Fortunately, the spurious waves originate from small-scale grid-related numerical errors and therefore can be mitigated using small amounts of numerical diffusion. We show that, in some cases, the clouds are better represented in a variable resolution grid when compared to a respective uniform resolution grid with the same number of cells, while in other cases, grid effects can deteriorate the cloud and rain representation.


2018 ◽  
Vol 40 ◽  
pp. 05032
Author(s):  
Minh H. Le ◽  
Virgile Dubos ◽  
Marina Oukacine ◽  
Nicole Goutal

Strong interactions exist between flow dynamics and vegetation in open-channel. Depth-averaged shallow water equations can be used for such a study. However, explicit representation of vegetation can lead to very high resolution of the mesh since the vegetation is often modelled as vertical cylinders. Our work aims to study the ability of a single porosity-based shallow water model for these applications. More attention on flux and source terms discretizations are required in order to archive the well-balancing and shock capturing properties. We present a new Godunov-type finite volume scheme based on a simple-wave approximation and compare it with some other methods in the literature. A first application with experimental data was performed.


Author(s):  
Fatima-zahra Mihami ◽  
Volker Roeber

We present an efficient and robust numerical model for the solution of the Shallow Water Equations with the objective to develop the numerical foundation for an advanced free surface flow solver. The numerical solution is based on an explicit Finite Volume scheme on a staggered grid to ensure the conservation of mass and momentum across flow discontinuities and wet-dry transitions. This leads to an accurate numerical solution at low computational cost without the need for Riemann solvers. The efficiency of the lean numerical structure is further optimized through a CUDA-GPU implementation.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/xMnK_r7Tj1Q


2011 ◽  
Vol 139 (2) ◽  
pp. 523-548 ◽  
Author(s):  
Chungang Chen ◽  
Feng Xiao ◽  
Xingliang Li

Abstract An adaptive global shallow-water model is proposed on cubed-sphere grid using the multimoment finite volume scheme and the Berger–Oliger adaptive mesh refinement (AMR) algorithm that was originally designed for a Cartesian grid. On each patch of the cubed-sphere grid, the curvilinear coordinates are constructed in a way that the Berger–Oliger algorithm can be applied directly. Moreover, an algorithm to transfer data across neighboring patches is proposed to establish a practical integrated framework for global AMR computation on the cubed-sphere grid. The multimoment finite volume scheme is adopted as the fluid solver and is essentially beneficial to the implementation of AMR on the cubed-sphere grid. The multimoment interpolation based on both volume-integrated average (VIA) and point value (PV) provides the compact reconstruction that makes the present scheme very attractive not only in dealing with the artificial boundaries between different patches but also in the coarse–fine interpolations required in the AMR computations. The single-cell-based reconstruction avoids involving more than two nesting levels during interpolations. The reconstruction profile of constrained interpolation profile–conservative semi-Lagrangian scheme with third-order polynomial function (CIP-CSL3) is adopted where the slope parameter provides a flexible and convenient switching to get the desired numerical properties, such as high-order (fourth order) accuracy, monotonicity, and positive definiteness. Numerical experiments with typical benchmark tests for both advection equation and shallow-water equations are carried out to evaluate the proposed model. The numerical errors and the corresponding CPU times of numerical experiments on uniform and adaptive meshes verify the performance of the proposed model. Compared to the uniformly refined grid, the AMR technique is able to achieve the similar numerical accuracy with less computational cost.


Mathematics ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 848
Author(s):  
Ernesto Guerrero Fernández ◽  
Manuel Jesús Castro-Díaz ◽  
Tomás Morales de Luna

In this work, we consider a multilayer shallow water model with variable density. It consists of a system of hyperbolic equations with non-conservative products that takes into account the pressure variations due to density fluctuations in a stratified fluid. A second-order finite volume method that combines a hydrostatic reconstruction technique with a MUSCL second order reconstruction operator is developed. The scheme is well-balanced for the lake-at-rest steady state solutions. Additionally, hints on how to preserve a general class of stationary solutions corresponding to a stratified density profile are also provided. Some numerical results are presented, including validation with laboratory data that show the efficiency and accuracy of the approach introduced here. Finally, a comparison between two different parallelization strategies on GPU is presented.


2009 ◽  
Vol 137 (10) ◽  
pp. 3339-3350 ◽  
Author(s):  
Ramachandran D. Nair

Abstract A second-order diffusion scheme is developed for the discontinuous Galerkin (DG) global shallow-water model. The shallow-water equations are discretized on the cubed sphere tiled with quadrilateral elements relying on a nonorthogonal curvilinear coordinate system. In the viscous shallow-water model the diffusion terms (viscous fluxes) are approximated with two different approaches: 1) the element-wise localized discretization without considering the interelement contributions and 2) the discretization based on the local discontinuous Galerkin (LDG) method. In the LDG formulation the advection–diffusion equation is solved as a first-order system. All of the curvature terms resulting from the cubed-sphere geometry are incorporated into the first-order system. The effectiveness of each diffusion scheme is studied using the standard shallow-water test cases. The approach of element-wise localized discretization of the diffusion term is easy to implement but found to be less effective, and with relatively high diffusion coefficients, it can adversely affect the solution. The shallow-water tests show that the LDG scheme converges monotonically and that the rate of convergence is dependent on the coefficient of diffusion. Also the LDG scheme successfully eliminates small-scale noise, and the simulated results are smooth and comparable to the reference solution.


2009 ◽  
Vol 137 (4) ◽  
pp. 1422-1437 ◽  
Author(s):  
Jin-Luen Lee ◽  
Alexander E. MacDonald

Abstract An icosahedral-hexagonal shallow-water model (SWM) on the sphere is formulated on a local Cartesian coordinate based on the general stereographic projection plane. It is discretized with the third-order Adam–Bashforth time-differencing scheme and the second-order finite-volume operators for spatial derivative terms. The finite-volume operators are applied to the model variables defined on the nonstaggered grid with the edge variables interpolated using polynomial interpolation. The projected local coordinate reduces the solution space from the three-dimensional, curved, spherical surface to the two-dimensional plane and thus reduces the number of complete sets of basis functions in the Vandermonde matrix, which is the essential component of the interpolation. The use of a local Cartesian coordinate also greatly simplifies the mathematic formulation of the finite-volume operators and leads to the finite-volume integration along straight lines on the plane, rather than along curved lines on the spherical surface. The SWM is evaluated with the standard test cases of Williamson et al. Numerical results show that the icosahedral SWM is free from Pole problems. The SWM is a second-order finite-volume model as shown by the truncation error convergence test. The lee-wave numerical solutions are compared and found to be very similar to the solutions shown in other SWMs. The SWM is stably integrated for several weeks without numerical dissipation using the wavenumber 4 Rossby–Haurwitz solution as an initial condition. It is also shown that the icosahedral SWM achieves mass conservation within round-off errors as one would expect from a finite-volume model.


2013 ◽  
Vol 57 (03) ◽  
pp. 125-140
Author(s):  
Daniel A. Liut ◽  
Kenneth M. Weems ◽  
Tin-Guen Yen

A quasi-three-dimensional hydrodynamic model is presented to simulate shallow water phenomena. The method is based on a finite-volume approach designed to solve shallow water equations in the time domain. The nonlinearities of the governing equations are considered. The methodology can be used to compute green water effects on a variety of platforms with six-degrees-of-freedom motions. Different boundary and initial conditions can be applied for multiple types of moving platforms, like a ship's deck, tanks, etc. Comparisons with experimental data are discussed. The shallow water model has been integrated with the Large Amplitude Motions Program to compute the effects of green water flow over decks within a time-domain simulation of ship motions in waves. Results associated to this implementation are presented.


Sign in / Sign up

Export Citation Format

Share Document