scholarly journals NorCPM1 and its contribution to CMIP6 DCPP

2021 ◽  
Vol 14 (11) ◽  
pp. 7073-7116
Author(s):  
Ingo Bethke ◽  
Yiguo Wang ◽  
François Counillon ◽  
Noel Keenlyside ◽  
Madlen Kimmritz ◽  
...  

Abstract. The Norwegian Climate Prediction Model version 1 (NorCPM1) is a new research tool for performing climate reanalyses and seasonal-to-decadal climate predictions. It combines the Norwegian Earth System Model version 1 (NorESM1) – which features interactive aerosol–cloud schemes and an isopycnic-coordinate ocean component with biogeochemistry – with anomaly assimilation of sea surface temperature (SST) and T/S-profile observations using the ensemble Kalman filter (EnKF). We describe the Earth system component and the data assimilation (DA) scheme, highlighting implementation of new forcings, bug fixes, retuning and DA innovations. Notably, NorCPM1 uses two anomaly assimilation variants to assess the impact of sea ice initialization and climatological reference period: the first (i1) uses a 1980–2010 reference climatology for computing anomalies and the DA only updates the physical ocean state; the second (i2) uses a 1950–2010 reference climatology and additionally updates the sea ice state via strongly coupled DA of ocean observations. We assess the baseline, reanalysis and prediction performance with output contributed to the Decadal Climate Prediction Project (DCPP) as part of the sixth Coupled Model Intercomparison Project (CMIP6). The NorESM1 simulations exhibit a moderate historical global surface temperature evolution and tropical climate variability characteristics that compare favourably with observations. The climate biases of NorESM1 using CMIP6 external forcings are comparable to, or slightly larger than those of, the original NorESM1 CMIP5 model, with positive biases in Atlantic meridional overturning circulation (AMOC) strength and Arctic sea ice thickness, too-cold subtropical oceans and northern continents, and a too-warm North Atlantic and Southern Ocean. The biases in the assimilation experiments are mostly unchanged, except for a reduced sea ice thickness bias in i2 caused by the assimilation update of sea ice, generally confirming that the anomaly assimilation synchronizes variability without changing the climatology. The i1 and i2 reanalysis/hindcast products overall show comparable performance. The benefits of DA-assisted initialization are seen globally in the first year of the prediction over a range of variables, also in the atmosphere and over land. External forcings are the primary source of multiyear skills, while added benefit from initialization is demonstrated for the subpolar North Atlantic (SPNA) and its extension to the Arctic, and also for temperature over land if the forced signal is removed. Both products show limited success in constraining and predicting unforced surface ocean biogeochemistry variability. However, observational uncertainties and short temporal coverage make biogeochemistry evaluation uncertain, and potential predictability is found to be high. For physical climate prediction, i2 performs marginally better than i1 for a range of variables, especially in the SPNA and in the vicinity of sea ice, with notably improved sea level variability of the Southern Ocean. Despite similar skills, i1 and i2 feature very different drift behaviours, mainly due to their use of different climatologies in DA; i2 exhibits an anomalously strong AMOC that leads to forecast drift with unrealistic warming in the SPNA, whereas i1 exhibits a weaker AMOC that leads to unrealistic cooling. In polar regions, the reduction in climatological ice thickness in i2 causes additional forecast drift as the ice grows back. Posteriori lead-dependent drift correction removes most hindcast differences; applications should therefore benefit from combining the two products. The results confirm that the large-scale ocean circulation exerts strong control on North Atlantic temperature variability, implying predictive potential from better synchronization of circulation variability. Future development will therefore focus on improving the representation of mean state and variability of AMOC and its initialization, in addition to upgrades of the atmospheric component. Other efforts will be directed to refining the anomaly assimilation scheme – to better separate internal and forced signals, to include land and atmosphere initialization and new observational types – and improving biogeochemistry prediction capability. Combined with other systems, NorCPM1 may already contribute to skilful multiyear climate prediction that benefits society.

2021 ◽  
Author(s):  
Ingo Bethke ◽  
Yiguo Wang ◽  
François Counillon ◽  
Noel Keenlyside ◽  
Madlen Kimmritz ◽  
...  

Abstract. The Norwegian Climate Prediction Model version 1 (NorCPM1) is a new research tool for performing climate reanalyses and seasonal-to-decadal climate predictions. It combines the Norwegian Earth System Model version 1 (NorESM1) – which features interactive aerosol-cloud schemes and an isopycnic-coordinate ocean component with biogeochemistry – with anomaly assimilation of SST and T/S-profile observations using the Ensemble Kalman Filter (EnKF). We first describe the Earth system component and the data assimilation (DA) scheme, highlighting implementation of new forcings, bug-fixes, re-tuning and DA innovations. Notably, NorCPM1 uses two anomaly assimilation variants to assess the impact of sea ice initialisation and climatological reference period: The first (i1) uses a 1980–2010 reference climatology for computing anomalies and the DA only updates the physical ocean state; the second (i2) uses a 1950–2010 reference climatology and additionally updates the sea ice state via strongly coupled DA of ocean observations. We then assess the baseline, reanalysis and prediction performance with output contributed to the Decadal Climate Prediction Project (DCPP) as part of the sixth Coupled Model Intercomparison Project (CMIP6). The non-assimilation experiments exhibit a moderate historical global surface temperature evolution and tropical climate variability characteristics that compare favourably with observations. The climate biases of NorCPM1 using CMIP6 external forcings, are comparable to, or slightly larger than those of the original NorESM1 CMIP5 model, with positive biases in Atlantic meridional overturning circulation (AMOC) strength and Arctic sea ice thickness, too cold subtropical oceans and northern continents, and a too warm North Atlantic and Southern Ocean. The biases in the assimilation experiments are mostly unchanged except for a reduced sea ice thickness bias in i2 caused by the assimilation update of sea ice, generally confirming that the anomaly assimilation synchronises variability without changing the climatology. The i1 and i2 reanalysis/hindcast products overall show comparable performance. The benefits of initialisation are seen globally in the first year of the prediction over a range of variables, also in the atmosphere and over land. External forcings are the primary source of multi-year skills, while added benefit from initialisation is demonstrated for the subpolar North Atlantic (SPNA) and its extension to the Arctic. Both products show limited success in constraining and predicting surface ocean biogeochemistry variability. However, observational uncertainties and short temporal coverage make biogeochemistry evaluation uncertain while potential predictability is found to be high. For physical climate prediction, i2 performs marginally better than i1 for a range of variables, especially in the SPNA and in the vicinity of sea ice, with notably improved sea level variability of the Southern Ocean. Despite similar skills, i1 and i2 feature very different drift behaviours, mainly due to their use of different climatologies in DA; i2 exhibits an anomalously strong AMOC that leads to forecast drift with unrealistic warming in the SPNA, whereas i1 exhibits a weaker AMOC that leads to unrealistic cooling. In polar regions, the reduction in climatological ice thickness in i2 causes additional forecast drift as the ice grows back. Posteriori lead dependent drift correction removes most hindcast differences; applications should therefore benefit from combining the two products. The results confirm that the large-scale ocean circulation exerts strong control on North Atlantic temperature variability, implying predictive potential from better synchronisation of circulation variability. Future development will therefore focus on improving the representation of mean state and variability of AMOC and its initialisation. Other efforts will be directed to refining the anomaly assimilation scheme – to better separate between internal versus forced signals, to include land and atmosphere initialisation and new observational types – and improving biogeochemistry prediction capability. Combined with other models, NorCPM1 may already contribute to skilful multi-year climate prediction that benefits society.


2015 ◽  
Vol 9 (5) ◽  
pp. 4893-4923 ◽  
Author(s):  
S. Schwegmann ◽  
E. Rinne ◽  
R. Ricker ◽  
S. Hendricks ◽  
V. Helm

Abstract. Knowledge about Antarctic sea-ice volume and its changes over the past decades has been sparse due to the lack of systematic sea-ice thickness measurements in this remote area. Recently, first attempts have been made to develop a sea-ice thickness product over the Southern Ocean from space-borne radar altimetry and results look promising. Today, more than 20 years of radar altimeter data are potentially available for such products. However, data come from different sources, and the characteristics of individual sensors differ. Hence, it is important to study the consistency between single sensors in order to develop long and consistent time series over the potentially available measurement period. Here, the consistency between freeboard measurements of the Radar Altimeter 2 on-board Envisat and freeboard measurements from the Synthetic-Aperture Interferometric Radar Altimeter on-board CryoSat-2 is tested for their overlap period in 2011. Results indicate that mean and modal values are comparable over the sea-ice growth season (May–October) and partly also beyond. In general, Envisat data shows higher freeboards in the seasonal ice zone while CryoSat-2 freeboards are higher in the perennial ice zone and near the coasts. This has consequences for the agreement in individual sectors of the Southern Ocean, where one or the other ice class may dominate. Nevertheless, over the growth season, mean freeboard for the entire (regional separated) Southern Ocean differs generally by not more than 2 cm (5 cm, except for the Amundsen/Bellingshausen Sea) between Envisat and CryoSat-2, and the differences between modal freeboard lie generally within ±10 cm and often even below.


2016 ◽  
Vol 10 (4) ◽  
pp. 1415-1425 ◽  
Author(s):  
Sandra Schwegmann ◽  
Eero Rinne ◽  
Robert Ricker ◽  
Stefan Hendricks ◽  
Veit Helm

Abstract. Knowledge about Antarctic sea-ice volume and its changes over the past decades has been sparse due to the lack of systematic sea-ice thickness measurements in this remote area. Recently, first attempts have been made to develop a sea-ice thickness product over the Southern Ocean from space-borne radar altimetry and results look promising. Today, more than 20 years of radar altimeter data are potentially available for such products. However, the characteristics of individual radar types differ for the available altimeter missions. Hence, it is important and our goal to study the consistency between single sensors in order to develop long and consistent time series. Here, the consistency between freeboard measurements of the Radar Altimeter 2 on board Envisat and freeboard measurements from the Synthetic-Aperture Interferometric Radar Altimeter on board CryoSat-2 is tested for their overlap period in 2011. Results indicate that mean and modal values are in reasonable agreement over the sea-ice growth season (May–October) and partly also beyond. In general, Envisat data show higher freeboards in the first-year ice zone while CryoSat-2 freeboards are higher in the multiyear ice zone and near the coasts. This has consequences for the agreement in individual sectors of the Southern Ocean, where one or the other ice class may dominate. Nevertheless, over the growth season, mean freeboard for the entire (regionally separated) Southern Ocean differs generally by not more than 3 cm (8 cm, with few exceptions) between Envisat and CryoSat-2, and the differences between modal freeboards lie generally within ±10 cm and often even below.


2007 ◽  
Vol 46 ◽  
pp. 419-427 ◽  
Author(s):  
Angelika H.H. Renner ◽  
Victoria Lytle

AbstractSea-ice thickness is a key parameter for estimates of salt fluxes to the ocean and the contribution to global thermohaline circulation. Observations of sea-ice thickness in the Southern Ocean are sparse and difficult to collect. An exception to this data gap is time-series data from upward-looking sonars (ULS) which sample the drifting sea ice continuously. In this study we use ULS data from ten different locations over periods ranging from 9 to 25 months to compare with model data. Although these data are limited in space and time, they provide a qualitative indication of the ability of global climate models (GCMs) to adequately represent Southern Ocean sea ice. We compare the ULS data to output from four different GCMs (BCCR-BCM2.0, ECHAM5/MPI-OM, UKMO-HadCM3 and NCAR CCSM3) which were used for the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. They simulate the ice thickness reasonably well, but in most cases average model ice thickness is less than thicknesses derived from ULS data. The seasonal cycle produced by the models correlates well with the ULS except for locations near Maud Rise, where in summer the ULS find a low concentration of thick ice floes. This overly thin ice will have implications for both the salt flux to the central Weddell Sea during the growth season and the freshwater flux during the melt season. Using satellite-derived ice-drift data to calculate transports in the Weddell Sea, we find that the underestimation of ice thickness results in underestimated salt fluxes.


2020 ◽  
Author(s):  
Roberto Bilbao ◽  
Simon Wild ◽  
Pablo Ortega ◽  
Juan Acosta-Navarro ◽  
Thomas Arsouze ◽  
...  

Abstract. In this paper we present and evaluate the skill of the EC-Earth3.3 decadal prediction system contributing to the Decadal Climate Prediction Project - Component A (DCPP-A). This prediction system is capable of skilfully simulating past global mean surface temperature variations at interannual and decadal forecast times as well as the local surface temperature in regions such as the Tropical Atlantic, the Indian Ocean and most of the continental areas, although most of the skill comes from the representation of the externally forced trends. A benefit of initialisation in the predictive skill is evident in some areas of the Tropical Pacific and North Atlantic Oceans in the first forecast years, an added value that gets mostly confined to the south-east Tropical Pacific and the eastern Subpolar North Atlantic at the longest forecast times (6–10 years). The central Subpolar North Atlantic shows poor predictive skill and a detrimental effect of the initialisation due to the occurrence of an initialisation shock, itself related to a collapse in Labrador Sea convection by the third forecast year that leads to a rapid weakening of the Atlantic Meridional Overturning Circulation (AMOC) and excessive local sea ice growth. The shutdown in Labrador Sea convection responds to a gradual increase in the local density stratification in the first years of the forecast, ultimately related to the different paces at which surface and subsurface temperature and salinity drift towards their preferred mean state. This transition happens rapidly in the surface and more slowly in the subsurface, where, by the tenth forecast year, the model is still far from the typical mean states in the corresponding ensemble of historical simulations with EC-Earth3. Our study thus highlights the importance of the Labrador Sea for initialisation, the relevance of reducing model bias by model tuning or, preferably, model improvement when using full-field initialisation, and the need to identify optimal initialisation strategies.


2020 ◽  
Author(s):  
Tian Tian ◽  
Shuting Yang ◽  
Pasha Karami ◽  
François Massonnet ◽  
Tim Kruschke ◽  
...  

<p>The Arctic has lost more than 50% multiyear sea ice (MYI) area during 1999-2017. Observation analysis suggests that if the decline of the MYI coverage continues, changes in the Arctic ice cover (i.e. area and volume) will be more controlled by seasonal ice than the effect of global warming. To investigate how large and where the source of Arctic prediction skill is given a large losses of thick MYI during the last two decades, we explore the decadal prediction skills and sensitivity to sea ice thickness (SIT) initialization from the EC-Earth3 Climate Prediction System with Anomaly Initialization (EC-Earth3-CPSAI). Three sets of ensemble hind-cast experiments following the protocol for the CMIP6 Decadal Climate Prediction Project (DCPP) are carried out in which the predictions start from: 1) a baseline system with ocean only initialization; 2) with ocean and sea ice concentration (SIC) initialization; 3) with ocean, SIC and SIT initialization. The hind-cast experiments are initialized and validated based on the ERA-Interim-reanalysis for the atmosphere and ORAS5 for ocean and sea-ice, with a focus period 1997-2016. All initialized experiments show better agreement with ORAS5 than the CMIP6 historical run (i.e. the Free run) for the first winter sea ice forecast. The SIT initialized experiments show the best skill in predicting SIT (or volume) and the added value by greatly reducing errors of near surface air temperature over the Greenland and its surrounding waters. In the Central Arctic, the Beaufort and East Siberian Seas, there are only minor differences in prediction skills on seasonal to decadal time scales between the ocean-only initialized and the SIT initialized experiments, indicating that the source of predictability in these regions are mainly from the ocean; while the ocean-only initialization degrades skill with larger RMSE than the Free run, e.g. during the ice-freezing season in the GIN and Barents Seas, or at  the summer minimum in the Kara Sea, the added value from the SIT initialized experiment is present, and it may have long-term effect (>4 years) probably associated with sea-ice recirculation. In all cases, the improvement from the ocean-only initialization to also including SIC initialization is found negligible, even somehow degrading the skills. This highlights the important use of SIT in predicting changes in the Arctic sea ice cover at various time scales during the study period. Therefore, the sea-ice initialization with constraint on SIT is recommended as the most effective initialization strategy in our EC-Earth3-CPSAI for present climate prediction from seasonal to decadal time scales.</p>


2021 ◽  
Author(s):  
Sutao Liao ◽  
Hao Luo ◽  
Jinfei Wang ◽  
Qian Shi ◽  
Jinlun Zhang ◽  
...  

Abstract. Antarctic sea ice is an important component of the Earth system. However, its role in the Earth system is still not very clear due to limited Antarctic sea ice thickness (SIT) data. A reliable sea ice reanalysis can be useful to study Antarctic SIT and its role in the Earth system. Among various Antarctic sea ice reanalysis products, the Global Ice-Ocean Modeling and Assimilation System (GIOMAS) output is widely used in the research of Antarctic sea ice. As more Antarctic SIT observations with quality control are released, a further evaluation of Antarctic SIT from GIOMAS is conducted in this study based on in-situ and satellite observations. Generally, though only sea ice concentration is assimilated, GIOMAS can basically reproduce the observed variability of sea ice volume and its changes in the trend before and after 2013, indicating that GIOMAS is a good option to study the long-term variation of Antarctic sea ice. However, due to deficiencies in model and asymmetric changes in SIT caused by assimilation, GIOMAS underestimates Antarctic SIT especially in deformed ice regions, which has an impact on not only the mean state of SIT but also the variability. Thus, besides the further development of model, assimilating additional sea ice observations (e.g., SIT and sea ice drift) with advanced assimilation methods may be conducive to a more accurate estimation of Antarctic SIT.


2021 ◽  
Vol 12 (1) ◽  
pp. 173-196
Author(s):  
Roberto Bilbao ◽  
Simon Wild ◽  
Pablo Ortega ◽  
Juan Acosta-Navarro ◽  
Thomas Arsouze ◽  
...  

Abstract. In this paper, we present and evaluate the skill of an EC-Earth3.3 decadal prediction system contributing to the Decadal Climate Prediction Project – Component A (DCPP-A). This prediction system is capable of skilfully simulating past global mean surface temperature variations at interannual and decadal forecast times as well as the local surface temperature in regions such as the tropical Atlantic, the Indian Ocean and most of the continental areas, although most of the skill comes from the representation of the external radiative forcings. A benefit of initialization in the predictive skill is evident in some areas of the tropical Pacific and North Atlantic oceans in the first forecast years, an added value that is mostly confined to the south-east tropical Pacific and the eastern subpolar North Atlantic at the longest forecast times (6–10 years). The central subpolar North Atlantic shows poor predictive skill and a detrimental effect of initialization that leads to a quick collapse in Labrador Sea convection, followed by a weakening of the Atlantic Meridional Overturning Circulation (AMOC) and excessive local sea ice growth. The shutdown in Labrador Sea convection responds to a gradual increase in the local density stratification in the first years of the forecast, ultimately related to the different paces at which surface and subsurface temperature and salinity drift towards their preferred mean state. This transition happens rapidly at the surface and more slowly in the subsurface, where, by the 10th forecast year, the model is still far from the typical mean states in the corresponding ensemble of historical simulations with EC-Earth3. Thus, our study highlights the Labrador Sea as a region that can be sensitive to full-field initialization and hamper the final prediction skill, a problem that can be alleviated by improving the regional model biases through model development and by identifying more optimal initialization strategies.


Sign in / Sign up

Export Citation Format

Share Document