scholarly journals 3D-Var versus Optimal Interpolation for Aerosol Assimilation: a Case Study over the Contiguous United States

Author(s):  
Youhua Tang ◽  
Mariusz Pagowski ◽  
Tianfeng Chai ◽  
Li Pan ◽  
Pius Lee ◽  
...  

Abstract. This study applies the Gridpoint Statistical Interpolation (GSI) 3D-Var assimilation tool originally developed by the National Centers for Environmental Prediction (NCEP), to improve surface PM2.5 predictions over the contiguous United States (CONUS) by assimilating aerosol optical depth (AOD) and surface PM2.5 in version 5.1 of the Community Multi-scale Air Quality (CMAQ) modeling system. GSI results are compared with those obtained using the optimal interpolation (OI) method (Tang et al., 2015) for July, 2011 over CONUS. Both GSI and OI assimilate surface PM2.5 observations at 00, 06, 12, and 18 UTC, and MODIS AOD at 18 UTC. In the GSI experiments, assimilation of surface PM2.5 leads to stronger increments in surface PM2.5 compared to the MODIS AOD assimilation. In contrast, we find a stronger impact of MODIS AOD on surface aerosols at 18 UTC compared to the surface PM2.5 OI assimilation. The increments resulting from the OI assimilation are spread in 11×11 horizontal grid cells (12 km horizontal resolution) while the spatial distribution of GSI increments is controlled by its background error covariances, and the horizontal/vertical length scales. The assimilations of observations using both GSI and OI generally help reduce the prediction biases, and improve correlation between model predictions and observations. GSI produces smoother result and yields overall better correlation coefficient and root mean squared error (RMSE). In this study, OI uses the relatively big model uncertainties, which helps yield better mean biases, but sometimes causes the RMSE increase. We also examine and discuss the sensitivity of the assimilation experiments results to the AOD forward operators

2017 ◽  
Vol 10 (12) ◽  
pp. 4743-4758 ◽  
Author(s):  
Youhua Tang ◽  
Mariusz Pagowski ◽  
Tianfeng Chai ◽  
Li Pan ◽  
Pius Lee ◽  
...  

Abstract. This study applies the Gridpoint Statistical Interpolation (GSI) 3D-Var assimilation tool originally developed by the National Centers for Environmental Prediction (NCEP), to improve surface PM2.5 predictions over the contiguous United States (CONUS) by assimilating aerosol optical depth (AOD) and surface PM2.5 in version 5.1 of the Community Multi-scale Air Quality (CMAQ) modeling system. An optimal interpolation (OI) method implemented earlier (Tang et al., 2015) for the CMAQ modeling system is also tested for the same period (July 2011) over the same CONUS. Both GSI and OI methods assimilate surface PM2.5 observations at 00:00, 06:00, 12:00 and 18:00 UTC, and MODIS AOD at 18:00 UTC. The assimilations of observations using both GSI and OI generally help reduce the prediction biases and improve correlation between model predictions and observations. In the GSI experiments, assimilation of surface PM2.5 (particle matter with diameter < 2.5 µm) leads to stronger increments in surface PM2.5 compared to its MODIS AOD assimilation at the 550 nm wavelength. In contrast, we find a stronger OI impact of the MODIS AOD on surface aerosols at 18:00 UTC compared to the surface PM2.5 OI method. GSI produces smoother result and yields overall better correlation coefficient and root mean squared error (RMSE). It should be noted that the 3D-Var and OI methods used here have several big differences besides the data assimilation schemes. For instance, the OI uses relatively big model uncertainties, which helps yield smaller mean biases, but sometimes causes the RMSE to increase. We also examine and discuss the sensitivity of the assimilation experiments' results to the AOD forward operators.


2010 ◽  
Vol 10 (11) ◽  
pp. 27967-28015 ◽  
Author(s):  
M. Kacenelenbogen ◽  
M. A. Vaughan ◽  
J. Redemann ◽  
R. M. Hoff ◽  
R. R. Rogers ◽  
...  

Abstract. The Cloud Aerosol LIdar with Orthogonal Polarization (CALIOP), on board the CALIPSO platform, has measured profiles of total attenuated backscatter coefficient (level 1 products) since June 2006. CALIOP's level 2 products, such as the aerosol backscatter and extinction coefficient profiles, are retrieved using a complex succession of automated algorithms. The goal of this study is to help identify potential shortcomings in the CALIOP version 2 level 2 aerosol extinction product and to illustrate some of the motivation for the changes that will be introduced in the next version of CALIOP data (version 3, currently being processed). As a first step, we compared CALIOP version 2-derived AOD with the collocated MODerate Imaging Spectroradiometer (MODIS) AOD retrievals over the Continental United States. The best statistical agreement between those two quantities was found over the Eastern part of the United States with, nonetheless, a weak correlation (R ~0.4) and an apparent CALIOP version 2 underestimation (by ~66%) of MODIS AOD. To help quantify the potential factors contributing to the uncertainty of the CALIOP aerosol extinction retrieval, we then focused on a one-day, multi-instrument, multiplatform comparison study during the CALIPSO and Twilight Zone (CATZ) validation campaign on August 04, 2007. This case study illustrates the following potential reasons for a bias in the CALIOP AOD: (i) CALIOP's low signal-to-noise ratio (SNR) leading to the misclassification and/or lack of aerosol layer identification, especially close to the Earth's surface; (ii) the cloud contamination of CALIOP version 2 aerosol backscatter and extinction profiles; (iii) potentially erroneous assumptions of the backscatter-to-extinction ratio (Sa) used in CALIOP's extinction retrievals; and (iv) calibration coefficient biases in the CALIOP daytime attenuated backscatter coefficient profiles.


2014 ◽  
Vol 7 (1) ◽  
pp. 33-41 ◽  
Author(s):  
Elisabeth Scheibelhofer

This paper focuses on gendered mobilities of highly skilled researchers working abroad. It is based on an empirical qualitative study that explored the mobility aspirations of Austrian scientists who were working in the United States at the time they were interviewed. Supported by a case study, the paper demonstrates how a qualitative research strategy including graphic drawings sketched by the interviewed persons can help us gain a better understanding of the gendered importance of social relations for the future mobility aspirations of scientists working abroad.


2015 ◽  
Vol 36-37 (1) ◽  
pp. 163-183
Author(s):  
Paul Taylor

John Rae, a Scottish antiquarian collector and spirit merchant, played a highly prominent role in the local natural history societies and exhibitions of nineteenth-century Aberdeen. While he modestly described his collection of archaeological lithics and other artefacts, principally drawn from Aberdeenshire but including some items from as far afield as the United States, as a mere ‘routh o’ auld nick-nackets' (abundance of old knick-knacks), a contemporary singled it out as ‘the best known in private hands' (Daily Free Press 4/5/91). After Rae's death, Glasgow Museums, National Museums Scotland, the University of Aberdeen Museum and the Pitt Rivers Museum in Oxford, as well as numerous individual private collectors, purchased items from the collection. Making use of historical and archive materials to explore the individual biography of Rae and his collection, this article examines how Rae's collecting and other antiquarian activities represent and mirror wider developments in both the ‘amateur’ antiquarianism carried out by Rae and his fellow collectors for reasons of self-improvement and moral education, and the ‘professional’ antiquarianism of the museums which purchased his artefacts. Considered in its wider nineteenth-century context, this is a representative case study of the early development of archaeology in the wider intellectual, scientific and social context of the era.


Sign in / Sign up

Export Citation Format

Share Document