scholarly journals JRAero: the Japanese Reanalysis for Aerosol v1.0

Author(s):  
Keiya Yumimoto ◽  
Taichu Y. Tanaka ◽  
Naga Oshima ◽  
Takashi Maki

Abstract. A global aerosol reanalysis product named the Japanese Reanalysis for Aerosol (JRAero) was constructed by the Meteorological Research Institute (MRI) of the Japan Meteorological Agency. The reanalysis employs a global aerosol transport model developed by MRI and a 2-dimensional variational data assimilation method. It assimilates maps of aerosol optical depth (AOD) from MODIS onboard Terra and Aqua satellites every 6 hours and has a TL159 horizontal resolution (approximately 1.1° × 1.1°). This paper describes the aerosol transport model, the data assimilation system, the observation data, and the set-up of the reanalysis and examines its quality. Comparisons with MODIS AODs showed that the reanalysis showed much better agreement than the free run (without assimilation) of the aerosol model and improved under- and overestimation in the free run, thus confirming the accuracy of the data assimilation system. The reanalysis had a root mean square error (RMSE) = 0.05, a correlation coefficient (R) = 0.96, a mean fractional error (MFE) = 23.7 %, a mean fractional bias (MFB) = 2.8 %, and an index of agreement (IOA) = 0.98. The better agreement of the first guess, compared with the free run, indicates that aerosol fields obtained by the reanalysis can improve short-term forecasts. AOD fields from the reanalysis also agreed well with monthly averaged global AODs obtained by the Aerosol Robotic Network (AERONET) (RMSE = 0.08, R = 0.90, MFE = 28.1 %, MFB = 0.6 %, and IOA = 0.93). Site-by-site comparison showed that the reanalysis was considerably better than the free run; RMSE was  0.90 at 40.7 % of the sites, and IOA was > 0.90 at 43.4 % of the sites. However, the reanalysis tended to have a negative bias at urban sites (in particular, megacities in industrializing countries) and a positive bias at mountain sites, possibly because of insufficient anthropogenic emissions data, the coarse model resolution, and the difference in representativeness between satellite and ground-based observations.

2017 ◽  
Vol 10 (9) ◽  
pp. 3225-3253 ◽  
Author(s):  
Keiya Yumimoto ◽  
Taichu Y. Tanaka ◽  
Naga Oshima ◽  
Takashi Maki

Abstract. A global aerosol reanalysis product named the Japanese Reanalysis for Aerosol (JRAero) was constructed by the Meteorological Research Institute (MRI) of the Japan Meteorological Agency. The reanalysis employs a global aerosol transport model developed by MRI and a two-dimensional variational data assimilation method. It assimilates maps of aerosol optical depth (AOD) from MODIS onboard the Terra and Aqua satellites every 6 h and has a TL159 horizontal resolution (approximately 1.1°  ×  1.1°). This paper describes the aerosol transport model, the data assimilation system, the observation data, and the setup of the reanalysis and examines its quality with AOD observations. Comparisons with MODIS AODs that were used for the assimilation showed that the reanalysis showed much better agreement than the free run (without assimilation) of the aerosol model and improved under- and overestimation in the free run, thus confirming the accuracy of the data assimilation system. The reanalysis had a root mean square error (RMSE) of 0.05, a correlation coefficient (R) of 0.96, a mean fractional error (MFE) of 23.7 %, a mean fractional bias (MFB) of 2.8 %, and an index of agreement (IOA) of 0.98. The better agreement of the first guess, compared to the free run, indicates that aerosol fields obtained by the reanalysis can improve short-term forecasts. AOD fields from the reanalysis also agreed well with monthly averaged global AODs obtained by the Aerosol Robotic Network (AERONET) (RMSE  =  0.08, R = 0. 90, MFE  =  28.1 %, MFB  =  0.6 %, and IOA  =  0.93). Site-by-site comparison showed that the reanalysis was considerably better than the free run; RMSE was less than 0.10 at 86.4 % of the 181 AERONET sites, R was greater than 0.90 at 40.7 % of the sites, and IOA was greater than 0.90 at 43.4 % of the sites. However, the reanalysis tended to have a negative bias at urban sites (in particular, megacities in industrializing countries) and a positive bias at mountain sites, possibly because of insufficient anthropogenic emissions data, the coarse model resolution, and the difference in representativeness between satellite and ground-based observations.


2021 ◽  
Author(s):  
Chiaki Kobayashi ◽  
Yosuke Fujii ◽  
Ichiro Ishikawa

AbstractTo evaluate the atmosphere–ocean coupled data assimilation system developed at the Meteorological Research Institute, the lead-lag relation between the intraseasonal variations (with a time scale of 20–100 days) in precipitation and sea surface temperature (SST) is examined in the tropics. It is shown that the relationship over the tropical western Pacific in the coupled reanalysis experiment (CDA) follows the observed relationship more closely than that in the uncoupled reanalysis experiment (UCPL). However, the lead-lag correlations with the observed SST are almost identical between precipitations in CDA and UCPL, indicating that the atmospheric component is strongly constrained by atmospheric observations and hardly affected by the SSTs as boundary conditions. Better representation of the SST–precipitation relationship in CDA is, thus, mostly due to the SST variation modified by the model physics. Comparison with additional reanalysis experiments using coupled and uncoupled systems that assimilate only in-situ observations without satellite observations suggests that the coupled model's physics complements the relatively weak observation constraints and reduces the degradation of the SST–precipitation relationship. Additional analysis for CDA suggests that the warming-to-cooling (cooling-to-warming) transition of the surface net flux, which is in phase with precipitation, is delayed from the positive (negative) peak of SST due to downward heat propagation in the ocean. Comparison of the oceanic near-surface temperature field with observation data indicates that the downward propagation of heat signals is too fast in CDA, resulting in smaller lags of transitions of the net heat flux and precipitation behind SST peaks.


2020 ◽  
Author(s):  
Marina Platonova

<p>This work is devoted to the urgent task of assessing regional flows of greenhouse gases from the Earth's surface according to satellite observations. The article presents the practical and theoretical results of the first year of study in the PhD program, later they will be included in the final dissertation. Flows will be estimated based on the observational data assimilation system for a three-dimensional model of diffusive transport of gas components in the atmosphere (MOZART-4). Model for Ozone and Associated Chemical Indicators, Version 4 (MOZART-4) is an autonomous global model for the transport of chemicals in the atmosphere.</p><p>The development of a modern system for the assimilation of real satellite data for assessing greenhouse gas sources is currently a very important theoretical and practical area in science. The ensemble approach is relevant and has great potential for using both stochastic and variational methods. In the process of implementation, this is an order of magnitude simpler, since there are no cumbersome matrix calculations using the model.</p><p>To solve the problem of estimating methane flows, the parameter estimation problem was solved: an algorithm for data assimilation was developed; the Kalman filter with the transformation of the local ensemble was used as the basis for it. Using an example of a model problem, an algorithm for estimating the concentration of a passive impurity and a parameter is developed. The case was also considered when only one parameter can be estimated in the assimilation system. In this case it is considered that at the forecasting stage the parameter does not change, and the calculations in accordance with the transport model are included in the operator H, for example, as in Feng (2009,2017). H is the observation operator; transfers predicted values to observation points (and observed variables). For example, for satellite methane data, H includes:</p><ol><li>a) interpolation to the observation point;</li> <li>b) vertical averaging (using the middle core);</li> <li>c) if the observation data is obtained from a large time interval, then the operator H also includes a forecast for the model in time.</li> </ol><p>Numerical experiments were carried out with model and real data. Using numerical experiments with the model, it was shown that a large problem (global) can be solved sequentially by subregion, independently in each subregion, which allowed the use of MPI and OpenMP.</p>


2017 ◽  
Author(s):  
Wei He ◽  
Ivar R. van der Velde ◽  
Arlyn E. Andrews ◽  
Colm Sweeney ◽  
John Miller ◽  
...  

Abstract. We have implemented a regional carbon dioxide data assimilation system based on the CarbonTracker Data Assimilation Shell (CTDAS) and a high-resolution Lagrangian transport model, the Stochastic Time-Inverted Lagrangian Transport model driven by the Weather Forecast and Research meteorological fields (WRF-STILT). With this system, named as CTDAS‑Lagrange, we simultaneously optimize terrestrial biosphere fluxes and four parameters that adjust the lateral boundary conditions (BCs) against CO2 observations from the NOAA ESRL North America tall tower and aircraft Programmable Flask Packages (PFPs) sampling program. Least-squares optimization is performed with a time-stepping ensemble Kalman smoother, over a time window of 10 days and assimilating sequentially a time series of observations. Because the WRF-STILT footprints are pre-computed, it is computationally efficient to run the CTDAS-Lagrange system. To estimate the uncertainties of the optimized fluxes from the system, we performed sensitivity tests with various a priori biosphere fluxes (SiBCASA, SiB3, CT2013B) and BCs (optimized mole fraction fields from CT2013B and CTE2014, and an empirical data set derived from aircraft observations), as well as with a variety of choices on the ways that fluxes are adjusted (additive or multiplicative), covariance length scales, biosphere flux covariances, BC parameter uncertainties, and model-data mismatches. In pseudo-data experiments, we show that in our implementation the additive flux adjustment method is more flexible in optimizing NEE than the multiplicative flux adjustment method, and that the CTDAS-Lagrange system has the ability to correct for the potential biases in the lateral boundary conditions and to resolve large biases in the prior biosphere fluxes. Using real observations, we have derived a range of estimates for the optimized carbon fluxes from a series of sensitivity tests, which places the North American carbon sink for the year 2010 in a range from −0.92 to −1.26 PgC/yr. This is comparable to the TM5-based estimates of CarbonTracker (version CT2016, −0.91 ± 1.10 PgC/yr) and CarbonTracker Europe (version CTE2016, −0.91 ± 0.31 PgC/yr). We conclude that CTDAS-Lagrange can offer a versatile and computationally attractive alternative to these global systems for regional estimates of carbon fluxes, which can take advantage of high-resolution Lagrangian footprints that are increasingly easy to obtain.


2018 ◽  
Vol 11 (1) ◽  
pp. 283-304 ◽  
Author(s):  
Ivar R. van der Velde ◽  
John B. Miller ◽  
Michiel K. van der Molen ◽  
Pieter P. Tans ◽  
Bruce H. Vaughn ◽  
...  

Abstract. To improve our understanding of the global carbon balance and its representation in terrestrial biosphere models, we present here a first dual-species application of the CarbonTracker Data Assimilation System (CTDAS). The system's modular design allows for assimilating multiple atmospheric trace gases simultaneously to infer exchange fluxes at the Earth surface. In the prototype discussed here, we interpret signals recorded in observed carbon dioxide (CO2) along with observed ratios of its stable isotopologues 13CO2∕12CO2 (δ13C). The latter is in particular a valuable tracer to untangle CO2 exchange from land and oceans. Potentially, it can also be used as a proxy for continent-wide drought stress in plants, largely because the ratio of 13CO2 and 12CO2 molecules removed from the atmosphere by plants is dependent on moisture conditions.The dual-species CTDAS system varies the net exchange fluxes of both 13CO2 and CO2 in ocean and terrestrial biosphere models to create an ensemble of 13CO2 and CO2 fluxes that propagates through an atmospheric transport model. Based on differences between observed and simulated 13CO2 and CO2 mole fractions (and thus δ13C) our Bayesian minimization approach solves for weekly adjustments to both net fluxes and isotopic terrestrial discrimination that minimizes the difference between observed and estimated mole fractions.With this system, we are able to estimate changes in terrestrial δ13C exchange on seasonal and continental scales in the Northern Hemisphere where the observational network is most dense. Our results indicate a decrease in stomatal conductance on a continent-wide scale during a severe drought. These changes could only be detected after applying combined atmospheric CO2 and δ13C constraints as done in this work. The additional constraints on surface CO2 exchange from δ13C observations neither affected the estimated carbon fluxes nor compromised our ability to match observed CO2 variations. The prototype presented here can be of great benefit not only to study the global carbon balance but also to potentially function as a data-driven diagnostic to assess multiple leaf-level exchange parameterizations in carbon-climate models that influence the CO2, water, isotope, and energy balance.


2018 ◽  
Author(s):  
Takuya Kawabata ◽  
Thomas Schwitalla ◽  
Ahoro Adachi ◽  
Hans-Stefan Bauer ◽  
Volker Wulfmeyer ◽  
...  

Abstract. We developed two observational operators for dual polarimetric radars and implemented them in two variational data assimilation systems: WRF Var, the Weather Research and Forecasting Model variational data assimilation system, and NHM-4DVAR, the nonhydrostatic variational data assimilation system for the Japan Meteorological Agency nonhydrostatic model. The operators consist of a space interpolator, two types of variable converters as well as their linearized and transposed (adjoint) operators. The space interpolator takes account of the effects of radar-beam broadening in both vertical and horizontal directions and climatological beam bending. The first variable converter emulates polarimetric parameters with model prognostic variables and includes attenuation effects, and the second one derives rainwater content from the observed polarimetric parameter (specific differential phase). We developed linearized and adjoint operators for the space interpolator and variable converters and then assessed whether the linearity of the linearized operators and the accuracy of the adjoint operators were good enough for implementation in variational systems. The results of a simple assimilation experiment showed good agreement between assimilation results and observations with respect to reflectivity and specific differential phase but not with respect to differential reflectivity.


2011 ◽  
Vol 11 (12) ◽  
pp. 31523-31583 ◽  
Author(s):  
K. Miyazaki ◽  
H. J. Eskes ◽  
K. Sudo

Abstract. A data assimilation system has been developed to estimate global nitrogen oxides (NOx) emissions using OMI tropospheric NO2 columns (DOMINO product) and a global chemical transport model (CTM), CHASER. The data assimilation system, based on an ensemble Kalman filter approach, was applied to optimize daily NOx emissions with a horizontal resolution of 2.8° during the years 2005 and 2006. The background error covariance estimated from the ensemble CTM forecasts explicitly represents non-direct relationships between the emissions and tropospheric columns caused by atmospheric transport and chemical processes. In comparison to the a priori emissions based on bottom-up inventories, the optimized emissions were higher over Eastern China, the Eastern United States, Southern Africa, and Central-Western Europe, suggesting that the anthropogenic emissions are mostly underestimated in the inventories. In addition, the seasonality of the estimated emissions differed from that of the a priori emission over several biomass burning regions, with a large increase over Southeast Asia in April and over South America in October. The data assimilation results were validated against independent data: SCIAMACHY tropospheric NO2 columns and vertical NO2 profiles obtained from aircraft and lidar measurements. The emission correction greatly improved the agreement between the simulated and observed NO2 fields; this implies that the data assimilation system efficiently derives NOx emissions from concentration observations. We also demonstrated that biases in the satellite retrieval and model settings used in the data assimilation largely affect the magnitude of estimated emissions. These dependences should be carefully considered for better understanding NOx sources from top-down approaches.


2017 ◽  
Author(s):  
Ivar R. van der Velde ◽  
John B. Miller ◽  
Michiel K. van der Molen ◽  
Pieter P. Tans ◽  
Bruce H. Vaughn ◽  
...  

Abstract. To improve our understanding of the global carbon balance and its representation in terrestrial biosphere models we present here a first multi-species application of the CarbonTracker Data Assimilation System (CTDAS). The system's modular design allows for assimilating multiple atmospheric trace gases simultaneously to infer exchange fluxes at the Earth surface. In the prototype discussed here we interpret signals recorded in observed carbon dioxide (CO2) along with observed ratios of its stable isotopologues 13CO2/12CO2 (δ13C). The latter is in particular a valuable tracer to untangle CO2 exchange from land and oceans. Potentially, it can also be used as a proxy for continent-wide drought stress in plants, largely because the ratio of 13CO2 and 12CO2 molecules removed from the atmosphere by plants is dependent on moisture conditions. The multi-species CTDAS system varies the net exchange fluxes of both 13CO2 and CO2 in ocean and terrestrial biosphere models to create an ensemble of 13CO2 and CO2 fluxes that propagates through an atmospheric transport model. Based on differences between observed and simulated 13CO2 and CO2 mole fractions (and thus δ13C) our Bayesian minimization approach solves for weekly adjustments to both net fluxes and isotopic terrestrial discrimination that minimizes the difference between observed and estimated mole fractions. With this system we are able to estimate changes in terrestrial δ13C exchange on seasonal and continental scales in the Northern hemisphere where the observational network is most dense. Our results indicate a decrease in stomatal conductance on a continent-wide scale during a severe drought. These changes could only be detected after applying combined atmospheric CO2 and δ13C constraints as done in this work. The additional constraints on surface CO2 exchange from δ13C observations neither affected the estimated carbon fluxes, nor compromised our ability to match observed CO2 variations. The prototype presented here can be of great benefit not only to study the global carbon balance but potentially also to function as a data driven diagnostic to assess multiple leaf-level exchange parameterizations in carbon-climate models that influence the CO2, water, isotope, and energy balance.


2021 ◽  
Vol 21 (4) ◽  
pp. 2637-2674
Author(s):  
Athanasios Tsikerdekis ◽  
Nick A. J. Schutgens ◽  
Otto P. Hasekamp

Abstract. A data assimilation system for aerosol, based on an ensemble Kalman filter, has been developed for the ECHAM – Hamburg Aerosol Model (ECHAM-HAM) global aerosol model and applied to POLarization and Directionality of the Earth's Reflectances (POLDER)-derived observations of optical properties. The advantages of this assimilation system is that the ECHAM-HAM aerosol modal scheme carries both aerosol particle numbers and mass which are both used in the data assimilation system as state vectors, while POLDER retrievals in addition to aerosol optical depth (AOD) and the Ångström exponent (AE) also provide information related to aerosol absorption like aerosol absorption optical depth (AAOD) and single scattering albedo (SSA). The developed scheme can simultaneously assimilate combinations of multiple variables (e.g., AOD, AE, SSA) to optimally estimate mass mixing ratio and number mixing ratio of different aerosol species. We investigate the added value of assimilating AE, AAOD and SSA, in addition to the commonly used AOD, by conducting multiple experiments where different combinations of retrieved properties are assimilated. Results are evaluated with (independent) POLDER, Moderate Resolution Imaging Spectroradiometer (MODIS) Dark Target, MODIS Deep Blue and Aerosol Robotic Network (AERONET) observations. The experiment where POLDER AOD, AE and SSA are assimilated shows systematic improvement in mean error, mean absolute error and correlation for AOD, AE, AAOD and SSA compared to the experiment where only AOD is assimilated. The same experiment reduces the global ME against AERONET from 0.072 to 0.001 for AOD, from 0.273 to 0.009 for AE and from −0.012 to 0.002 for AAOD. Additionally, sensitivity experiments reveal the benefits of assimilating AE over AOD at a second wavelength or SSA over AAOD, possibly due to a simpler observation covariance matrix in the present data assimilation framework. We conclude that the currently available AE and SSA do positively impact data assimilation.


Sign in / Sign up

Export Citation Format

Share Document