scholarly journals The GGCMI phase II emulators: global gridded crop model responses to changes in CO<sub>2</sub>, temperature, water, and nitrogen (version 1.0)

Author(s):  
James Franke ◽  
Christoph Müller ◽  
Joshua Elliott ◽  
Alex C. Ruane ◽  
Jonas Jägermeyr ◽  
...  

Abstract. Statistical emulation allows combining advantageous features of statistical and process-based crop models for understanding the effects of future climate changes on crop yields. We describe here the development of emulators for nine process-based crop models and five crops using output from the Global Gridded Model Intercomparison Project (GGCMI) Phase II. The GGCMI Phase II experiment is designed with the explicit goal of producing a structured training dataset for emulator development that samples across four dimensions relevant to crop yields: atmospheric carbon dioxide (CO2) concentrations, temperature, water supply, and nitrogen inputs (CTWN). Simulations are run under two different adaptation assumptions: that growing seasons shorten in warmer climates, and that cultivar choice allows growing seasons to remain fixed. The dataset allows emulating the climatological mean yield response without relying on interannual variations; we show that these are quantitatively different. Climatological mean yield responses can be readily captured with a simple polynomial in nearly all locations, with errors significant only in some marginal lands where crops are not currently grown. In general, emulation errors are negligible relative to differences across crop models or even across climate model scenarios. We demonstrate that the resulting GGCMI emulators can reproduce yields under realistic future climate simulations, even though the GGCMI Phase II dataset is constructed with uniform CTWN offsets, suggesting that effects of changes in temperature and precipitation distributions are small relative to those of changing means. The resulting emulators therefore capture relevant crop model responses in a lightweight, computationally tractable form, providing a tool that can facilitate model comparison, diagnosis of interacting factors affecting yields, and integrated assessment of climate impacts.

2020 ◽  
Vol 13 (9) ◽  
pp. 3995-4018
Author(s):  
James A. Franke ◽  
Christoph Müller ◽  
Joshua Elliott ◽  
Alex C. Ruane ◽  
Jonas Jägermeyr ◽  
...  

Abstract. Statistical emulation allows combining advantageous features of statistical and process-based crop models for understanding the effects of future climate changes on crop yields. We describe here the development of emulators for nine process-based crop models and five crops using output from the Global Gridded Model Intercomparison Project (GGCMI) Phase 2. The GGCMI Phase 2 experiment is designed with the explicit goal of producing a structured training dataset for emulator development that samples across four dimensions relevant to crop yields: atmospheric carbon dioxide (CO2) concentrations, temperature, water supply, and nitrogen inputs (CTWN). Simulations are run under two different adaptation assumptions: that growing seasons shorten in warmer climates, and that cultivar choice allows growing seasons to remain fixed. The dataset allows emulating the climatological-mean yield response of all models with a simple polynomial in mean growing-season values. Climatological-mean yields are a central metric in climate change impact analysis; we show here that they can be captured without relying on interannual variations. In general, emulation errors are negligible relative to differences across crop models or even across climate model scenarios; errors become significant only in some marginal lands where crops are not currently grown. We demonstrate that the resulting GGCMI emulators can reproduce yields under realistic future climate simulations, even though the GGCMI Phase 2 dataset is constructed with uniform CTWN offsets, suggesting that the effects of changes in temperature and precipitation distributions are small relative to those of changing means. The resulting emulators therefore capture relevant crop model responses in a lightweight, computationally tractable form, providing a tool that can facilitate model comparison, diagnosis of interacting factors affecting yields, and integrated assessment of climate impacts.


2015 ◽  
Vol 54 (4) ◽  
pp. 785-794 ◽  
Author(s):  
Yi Zhang ◽  
Yanxia Zhao ◽  
Sining Chen ◽  
Jianping Guo ◽  
Enli Wang

AbstractProjections of climate change impacts on crop yields are subject to uncertainties, and quantification of such uncertainty is essential for the effective use of the projection results for adaptation and mitigation purposes. This work analyzes the uncertainties in maize yield predictions using two crop models together with three climate projections downscaled with one regional climate model nested with three global climate models under the A1B emission scenario in northeast China (NEC). Projections were evaluated for the Zhuanghe agrometeorological station in NEC for the 2021–50 period, taking 1971–2000 as the baseline period. The results indicated a yield reduction of 13% during 2021–50, with 95% probability intervals of (−41%, +12%) relative to 1971–2000. Variance decomposition of the yield projections showed that uncertainty in the projections caused by climate and crop models is likely to change with prediction period, and climate change uncertainty generally had a larger impact on projections than did crop model uncertainty during the 2021–50 period. In addition, downscaled climate projections had significant bias that can introduce significant uncertainties in yield projections. Therefore, they have to be bias corrected before use.


2019 ◽  
Author(s):  
James Franke ◽  
Christoph Müller ◽  
Joshua Elliott ◽  
Alex C. Ruane ◽  
Jonas Jagermeyr ◽  
...  

Abstract. Concerns about food security under climate change motivate efforts to better understand future changes in crop yields. Process-based crop models, which represent plant physiological and soil processes, are necessary tools for this purpose since they allow representing future climate and management conditions not sampled in the historical record and new locations to which cultivation may shift. However, process-based crop models differ in many critical details, and their responses to different interacting factors remain only poorly understood. The Global Gridded Crop Model Intercomparison (GGCMI) Phase II experiment, an activity of the Agricultural Model Intercomparison and Improvement Project (AgMIP), is designed to provide a systematic parameter sweep focused on climate change factors and their interaction with overall soil fertility, to allow both evaluating model behavior and emulating model responses in impact assessment tools. In this paper we describe the GGCMI Phase II experimental protocol and its simulation data archive. Twelve crop models simulate five crops with systematic uniform perturbations of historical climate, varying CO2, temperature, water supply, and applied nitrogen (``CTWN'') for rainfed and irrigated agriculture, and a second set of simulations represents a type of adaptation by allowing the adjustment of growing season length. We present some crop yield results to illustrate general characteristics of the simulations and potential uses of the GGCMI Phase II archive. For example, modeled yields show robust decreases to warmer temperatures in almost all regions, with a nonlinear dependence that indicates yields in warmer baseline locations have greater temperature sensitivity. Inter-model uncertainty is qualitatively similar across all the four input dimensions, but is largest in high-latitude regions where crops may be grown in the future.


2018 ◽  
Author(s):  
Abigail Snyder ◽  
Katherine V. Calvin ◽  
Meridel Phillips ◽  
Alex C. Ruane

Abstract. Future changes in Earth system state will impact agricultural yields and, through these changed yields, can have profound impacts on the global economy. Global gridded crop models estimate the influence of these Earth system changes on future crop yields, but are often too computationally intensive to dynamically couple into global multi-sector economic models, such as GCAM and other similar-in-scale models. Yet, generalizing a faster site-specific crop model's results to be used globally will introduce inaccuracies, and the question of which model to use is unclear given the wide variation in yield response across crop models. To examine the feedback loop among socioeconomics, Earth system changes, and crop yield changes, rapidly generated yield responses with some quantification of crop response uncertainty are desirable. The Persephone v1.0 response functions presented in this work are based on the Agricultural Model Intercomparison and Improvement Project (AgMIP) Coordinated Climate-Crop Modeling Project (C3MP) sensitivity test data set and are focused on providing GCAM and similar models with a tractable number of rapid to evaluate, dynamic yield response functions corresponding to a range of the yield response sensitivities seen in the C3MP data set. With the Persephone response functions, a new variety of agricultural impact experiments will be open to GCAM and other economic models; for example, examining the economic impacts of a multi-year drought in a key agricultural region and how economic changes in response to the drought can, in turn, impact the drought.


2020 ◽  
Author(s):  
Christoph Müller ◽  

&lt;p&gt;Climate change impacts on agriculture are subject to large uncertainties from a variety of sources. One of the most important sources of uncertainty is the uncertainty in the realization of climate change itself. In the absence of clear climate mitigation strategies and substantial uncertainties on population growth, economic development, technology and lifestyles, a very broad set of greenhouse gas emission scenarios has been developed to inform climate modeling. Climate models often differ in the spatial patterns of projected changes in particular with respect to changes in precipitation. The Coupled Model Intercomparison Project (CMIP5, CMIP6) provides a broad range of future climate change projections.&lt;/p&gt;&lt;p&gt;Crop models are often applied at selected sites or with global coverage, as in the Global Gridded Crop Model Intercomparison (GGCMI) of the Agricultural Model Intercomparison and Improvement Project (AgMIP). Global crop model applications have been shown to have some skill, but also add additional uncertainty, given that many processes cannot be calibrated properly for the lack of suitable reference data and because management information is largely absent (M&amp;#252;ller et al., 2017).&lt;/p&gt;&lt;p&gt;However, already the computational power required to compute the comprehensive set of climate projections prohibits such applications. Instead, typically, small and largely random selections of climate scenarios are used to project impacts, such as agricultural crop yields. McSweeney and Jones (2016) find that a selection of 5 climate models as often applied, is insufficient to cover the range of projections in all regions.&lt;/p&gt;&lt;p&gt;Here we present initial results of a comprehensive global climate impact assessment for crop yields that explores the full range of the CMIP6 climate projection archive. For this, we use a set of 9 global gridded crop model emulators (Franke et al., 2019b) that were trained on a very large systematic input sensitivity analysis with up to 1404 global-coverage, 31-year simulation data sets per crop and crop model (Franke et al., 2019a). The training domain includes variations in atmospheric carbon dioxide (CO2) concentrations (4 levels from 360 ppm to 810 ppm), air temperature (7 levels from -1 to +6&amp;#176;C), water supply (8 levels from -50 to +30% and full irrigation), nitrogen fertilization (3 levels from 10 to 200 kgN/ha) and adaptation (2 levels: none and regained growing seasons) and thus represents an unprecedented rich data base for emulator training. The emulators, in form of grid-cell specific regression models with 27 coefficients, are computationally light-weight and can thus be applied to the full CMIP6 data archive.&lt;/p&gt;&lt;p&gt;We here present first results from this analysis, breaking down the different sources of uncertainty (emission concentration pathways, climate model, crop model). Results will help to interpret crop model simulations in general: the unstructured reduction of the uncertainty space from selecting a small number of climate scenarios by e.g. first availability and/or individual crop models has so far hampered to quantify the uncertainty in crop model projections.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;Franke (2019a) Geoscientific Model Development Discuss, 2019:1-30.&lt;/p&gt;&lt;p&gt;Franke (2019b)&amp;#160; Geoscientific Model Development, submitted&lt;/p&gt;&lt;p&gt;McSweeney &amp; Jones, (2016) Climate Services, 1:24-29.&lt;/p&gt;&lt;p&gt;M&amp;#252;ller (2017) Geoscientific Model Development, 10:1403-1422.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;


2013 ◽  
Vol 6 (2) ◽  
pp. 495-515 ◽  
Author(s):  
B. Drewniak ◽  
J. Song ◽  
J. Prell ◽  
V. R. Kotamarthi ◽  
R. Jacob

Abstract. The potential impact of climate change on agriculture is uncertain. In addition, agriculture could influence above- and below-ground carbon storage. Development of models that represent agriculture is necessary to address these impacts. We have developed an approach to integrate agriculture representations for three crop types – maize, soybean, and spring wheat – into the coupled carbon–nitrogen version of the Community Land Model (CLM), to help address these questions. Here we present the new model, CLM-Crop, validated against observations from two AmeriFlux sites in the United States, planted with maize and soybean. Seasonal carbon fluxes compared well with field measurements for soybean, but not as well for maize. CLM-Crop yields were comparable with observations in countries such as the United States, Argentina, and China, although the generality of the crop model and its lack of technology and irrigation made direct comparison difficult. CLM-Crop was compared against the standard CLM3.5, which simulates crops as grass. The comparison showed improvement in gross primary productivity in regions where crops are the dominant vegetation cover. Crop yields and productivity were negatively correlated with temperature and positively correlated with precipitation, in agreement with other modeling studies. In case studies with the new crop model looking at impacts of residue management and planting date on crop yield, we found that increased residue returned to the litter pool increased crop yield, while reduced residue returns resulted in yield decreases. Using climate controls to signal planting date caused different responses in different crops. Maize and soybean had opposite reactions: when low temperature threshold resulted in early planting, maize responded with a loss of yield, but soybean yields increased. Our improvements in CLM demonstrate a new capability in the model – simulating agriculture in a realistic way, complete with fertilizer and residue management practices. Results are encouraging, with improved representation of human influences on the land surface and the potentially resulting climate impacts.


2016 ◽  
Vol 55 (3) ◽  
pp. 579-594 ◽  
Author(s):  
Michael J. Glotter ◽  
Elisabeth J. Moyer ◽  
Alex C. Ruane ◽  
Joshua W. Elliott

AbstractProjections of future food production necessarily rely on models, which must themselves be validated through historical assessments comparing modeled and observed yields. Reliable historical validation requires both accurate agricultural models and accurate climate inputs. Problems with either may compromise the validation exercise. Previous studies have compared the effects of different climate inputs on agricultural projections but either incompletely or without a ground truth of observed yields that would allow distinguishing errors due to climate inputs from those intrinsic to the crop model. This study is a systematic evaluation of the reliability of a widely used crop model for simulating U.S. maize yields when driven by multiple observational data products. The parallelized Decision Support System for Agrotechnology Transfer (pDSSAT) is driven with climate inputs from multiple sources—reanalysis, reanalysis that is bias corrected with observed climate, and a control dataset—and compared with observed historical yields. The simulations show that model output is more accurate when driven by any observation-based precipitation product than when driven by non-bias-corrected reanalysis. The simulations also suggest, in contrast to previous studies, that biased precipitation distribution is significant for yields only in arid regions. Some issues persist for all choices of climate inputs: crop yields appear to be oversensitive to precipitation fluctuations but undersensitive to floods and heat waves. These results suggest that the most important issue for agricultural projections may be not climate inputs but structural limitations in the crop models themselves.


2012 ◽  
Vol 5 (4) ◽  
pp. 4137-4185 ◽  
Author(s):  
B. Drewniak ◽  
J. Song ◽  
J. Prell ◽  
V. R. Kotamarthi ◽  
R. Jacob

Abstract. The potential impact of climate change on agriculture is uncertain. In addition, agriculture could influence above- and below-ground carbon storage. Development of models that represent agriculture is necessary to address these impacts. We have developed an approach to integrate agriculture representations for three crop types – maize, soybean, and spring wheat – into the coupled carbon-nitrogen version of the Community Land Model (CLM), to help address these questions. Here we present the new model, CLM-Crop, validated against observations from two AmeriFlux sites in the United States, planted with maize and soybean. Seasonal carbon fluxes compared well with field measurements. CLM-Crop yields were comparable with observations in some regions, although the generality of the crop model and its lack of technology and irrigation made direct comparison difficult. CLM-Crop was compared against the standard CLM3.5, which simulates crops as grass. The comparison showed improvement in gross primary productivity in regions where crops are the dominant vegetation cover. Crop yields and productivity were negatively correlated with temperature and positively correlated with precipitation. In case studies with the new crop model looking at impacts of residue management and planting date on crop yield, we found that increased residue returned to the litter pool increased crop yield, while reduced residue returns resulted in yield decreases. Using climate controls to signal planting date caused different responses in different crops. Maize and soybean had opposite reactions: when low temperature threshold resulted in early planting, maize responded with a loss of yield, but soybean yields increased. Our improvements in CLM demonstrate a new capability in the model – simulating agriculture in a realistic way, complete with fertilizer and residue management practices. Results are encouraging, with improved representation of human influences on the land surface and the potentially resulting climate impacts.


Sign in / Sign up

Export Citation Format

Share Document