scholarly journals Supplementary material to "The GGCMI Phase II experiment: global gridded crop model simulations under uniform changes in CO<sub>2</sub>, temperature, water, and nitrogen levels (protocol version 1.0)"

Author(s):  
James Franke ◽  
Christoph Müller ◽  
Joshua Elliott ◽  
Alex C. Ruane ◽  
Jonas Jagermeyr ◽  
...  
2020 ◽  
Author(s):  
James Franke ◽  
Christoph Müller ◽  
Joshua Elliott ◽  
Alex C. Ruane ◽  
Jonas Jägermeyr ◽  
...  

Abstract. Statistical emulation allows combining advantageous features of statistical and process-based crop models for understanding the effects of future climate changes on crop yields. We describe here the development of emulators for nine process-based crop models and five crops using output from the Global Gridded Model Intercomparison Project (GGCMI) Phase II. The GGCMI Phase II experiment is designed with the explicit goal of producing a structured training dataset for emulator development that samples across four dimensions relevant to crop yields: atmospheric carbon dioxide (CO2) concentrations, temperature, water supply, and nitrogen inputs (CTWN). Simulations are run under two different adaptation assumptions: that growing seasons shorten in warmer climates, and that cultivar choice allows growing seasons to remain fixed. The dataset allows emulating the climatological mean yield response without relying on interannual variations; we show that these are quantitatively different. Climatological mean yield responses can be readily captured with a simple polynomial in nearly all locations, with errors significant only in some marginal lands where crops are not currently grown. In general, emulation errors are negligible relative to differences across crop models or even across climate model scenarios. We demonstrate that the resulting GGCMI emulators can reproduce yields under realistic future climate simulations, even though the GGCMI Phase II dataset is constructed with uniform CTWN offsets, suggesting that effects of changes in temperature and precipitation distributions are small relative to those of changing means. The resulting emulators therefore capture relevant crop model responses in a lightweight, computationally tractable form, providing a tool that can facilitate model comparison, diagnosis of interacting factors affecting yields, and integrated assessment of climate impacts.


2019 ◽  
Author(s):  
James Franke ◽  
Christoph Müller ◽  
Joshua Elliott ◽  
Alex C. Ruane ◽  
Jonas Jagermeyr ◽  
...  

Abstract. Concerns about food security under climate change motivate efforts to better understand future changes in crop yields. Process-based crop models, which represent plant physiological and soil processes, are necessary tools for this purpose since they allow representing future climate and management conditions not sampled in the historical record and new locations to which cultivation may shift. However, process-based crop models differ in many critical details, and their responses to different interacting factors remain only poorly understood. The Global Gridded Crop Model Intercomparison (GGCMI) Phase II experiment, an activity of the Agricultural Model Intercomparison and Improvement Project (AgMIP), is designed to provide a systematic parameter sweep focused on climate change factors and their interaction with overall soil fertility, to allow both evaluating model behavior and emulating model responses in impact assessment tools. In this paper we describe the GGCMI Phase II experimental protocol and its simulation data archive. Twelve crop models simulate five crops with systematic uniform perturbations of historical climate, varying CO2, temperature, water supply, and applied nitrogen (``CTWN'') for rainfed and irrigated agriculture, and a second set of simulations represents a type of adaptation by allowing the adjustment of growing season length. We present some crop yield results to illustrate general characteristics of the simulations and potential uses of the GGCMI Phase II archive. For example, modeled yields show robust decreases to warmer temperatures in almost all regions, with a nonlinear dependence that indicates yields in warmer baseline locations have greater temperature sensitivity. Inter-model uncertainty is qualitatively similar across all the four input dimensions, but is largest in high-latitude regions where crops may be grown in the future.


Author(s):  
Shakirudeen Lawal ◽  
Stephen Sitch ◽  
Danica Lombardozzi ◽  
Julia E. M. S. Nabel ◽  
Hao-Wei Wey ◽  
...  

2019 ◽  
Author(s):  
Thomas Bueche ◽  
Marko Wenk ◽  
Benjamin Poschlod ◽  
Filippo Giadrossich ◽  
Mario Pirastru ◽  
...  

2007 ◽  
Vol 34 ◽  
pp. 211-222 ◽  
Author(s):  
GA Baigorria ◽  
JW Jones ◽  
D Shin ◽  
A Mishra ◽  
JJ O’Brien

Sign in / Sign up

Export Citation Format

Share Document