scholarly journals Evaluation of an operational ocean model configuration at 1/12° spatial resolution for the Indonesian seas (NEMO2.3/INDO12) – Part 2: Biogeochemistry

2016 ◽  
Vol 9 (4) ◽  
pp. 1523-1543 ◽  
Author(s):  
Elodie Gutknecht ◽  
Guillaume Reffray ◽  
Marion Gehlen ◽  
Iis Triyulianti ◽  
Dessy Berlianty ◽  
...  

Abstract. In the framework of the INDESO (Infrastructure Development of Space Oceanography) project, an operational ocean forecasting system was developed to monitor the state of the Indonesian seas in terms of circulation, biogeochemistry and fisheries. This forecasting system combines a suite of numerical models connecting physical and biogeochemical variables to population dynamics of large marine predators (tunas). The physical–biogeochemical coupled component (the INDO12BIO configuration) covers a large region extending from the western Pacific Ocean to the eastern Indian Ocean at 1/12° horizontal resolution. The NEMO-OPA (Nucleus for European Model of the Ocean) physical ocean model and the PISCES (Pelagic Interactions Scheme for Carbon and Ecosystem Studies) biogeochemical model are running simultaneously ("online" coupling), at the same resolution. The operational global ocean forecasting system (1/4°) operated by Mercator Océan provides the physical forcing, while climatological open boundary conditions are prescribed for the biogeochemistry. This paper describes the skill assessment of the INDO12BIO configuration. Model skill is assessed by evaluating a reference hindcast simulation covering the last 8 years (2007–2014). Model results are compared to satellite, climatological and in situ observations. Diagnostics are performed on nutrients, oxygen, chlorophyll a, net primary production and mesozooplankton. The model reproduces large-scale distributions of nutrients, oxygen, chlorophyll a, net primary production and mesozooplankton biomasses. Modelled vertical distributions of nutrients and oxygen are comparable to in situ data sets although gradients are slightly smoothed. The model simulates realistic biogeochemical characteristics of North Pacific tropical waters entering in the archipelago. Hydrodynamic transformation of water masses across the Indonesian archipelago allows for conserving nitrate and oxygen vertical distribution close to observations, in the Banda Sea and at the exit of the archipelago. While the model overestimates the mean surface chlorophyll a, the seasonal cycle is in phase with satellite estimations, with higher chlorophyll a concentrations in the southern part of the archipelago during the SE monsoon and in the northern part during the NW monsoon. The time series of chlorophyll a anomalies suggests that meteorological and ocean physical processes that drive the interannual variability of biogeochemical properties in the Indonesian region are reproduced by the model.

2015 ◽  
Vol 8 (8) ◽  
pp. 6669-6706 ◽  
Author(s):  
E. Gutknecht ◽  
G. Reffray ◽  
M. Gehlen ◽  
I. Triyulianti ◽  
D. Berlianty ◽  
...  

Abstract. In the framework of the INDESO (Infrastructure evelopment of Space Oceanography) project, an operational ocean forecasting system was developed to monitor the state of the Indonesian seas in terms of circulation, biogeochemistry and fisheries. This forecasting system combines a suite of numerical models connecting physical and biogeochemical variables to population dynamics of large marine predators (tunas). The physical/biogeochemical coupled component (INDO12BIO configuration) covers a large region extending from the western Pacific Ocean to the Eastern Indian Ocean at 1/12° resolution. The OPA/NEMO physical ocean model and the PISCES biogeochemical model are coupled in "on-line" mode without degradation in space and time. The operational global ocean forecasting system (1/4°) operated by Mercator Ocean provides the physical forcing while climatological open boundary conditions are prescribed for the biogeochemistry. This paper describes the skill assessment of the INDO12BIO configuration. Model skill is assessed by evaluating a reference hindcast simulation covering the last 8 years (2007–2014). Model results are compared to satellite, climatological and in situ observations. Diagnostics are performed on chlorophyll a, primary production, mesozooplankton, nutrients and oxygen. Model results reproduce the main characteristics of biogeochemical tracer distributions in space and time. The seasonal cycle of chlorophyll a is in phase with satellite observations. The northern and southern parts of the archipelago present a distinct seasonal cycle, with higher chlorophyll biomass in the southern (northern) part during SE (NW) monsoon. Nutrient and oxygen concentrations are correctly reproduced in terms of horizontal and vertical distributions. The biogeochemical content of water masses entering in the archipelago as well as the water mass transformation across the archipelago conserves realistic vertical distribution in Banda Sea and at the exit of the archipelago.


2008 ◽  
Vol 1 (1) ◽  
pp. 51-57 ◽  
Author(s):  
M Drévillon ◽  
R Bourdallé-Badie ◽  
C Derval ◽  
J M Lellouche ◽  
E Rémy ◽  
...  

2016 ◽  
Vol 3 ◽  
Author(s):  
David A. Siegel ◽  
Ken O. Buesseler ◽  
Michael J. Behrenfeld ◽  
Claudia R. Benitez-Nelson ◽  
Emmanuel Boss ◽  
...  

2017 ◽  
Vol 14 (2) ◽  
pp. 301-310 ◽  
Author(s):  
Carlos M. Duarte

Abstract. Vegetated coastal habitats, including seagrass and macroalgal beds, mangrove forests and salt marshes, form highly productive ecosystems, but their contribution to the global carbon budget remains overlooked, and these forests remain hidden in representations of the global carbon budget. Despite being confined to a narrow belt around the shoreline of the world's oceans, where they cover less than 7 million km2, vegetated coastal habitats support about 1 to 10 % of the global marine net primary production and generate a large organic carbon surplus of about 40 % of their net primary production (NPP), which is either buried in sediments within these habitats or exported away. Large, 10-fold uncertainties in the area covered by vegetated coastal habitats, along with variability about carbon flux estimates, result in a 10-fold bracket around the estimates of their contribution to organic carbon sequestration in sediments and the deep sea from 73 to 866 Tg C yr−1, representing between 3 % and 1∕3 of oceanic CO2 uptake. Up to 1∕2 of this carbon sequestration occurs in sink reservoirs (sediments or the deep sea) beyond these habitats. The organic carbon exported that does not reach depositional sites subsidizes the metabolism of heterotrophic organisms. In addition to a significant contribution to organic carbon production and sequestration, vegetated coastal habitats contribute as much to carbonate accumulation as coral reefs do. While globally relevant, the magnitude of global carbon fluxes supported by salt-marsh, mangrove, seagrass and macroalgal habitats is declining due to rapid habitat loss, contributing to loss of CO2 sequestration, storage capacity and carbon subsidies. Incorporating the carbon fluxes' vegetated coastal habitats' support into depictions of the carbon budget of the global ocean and its perturbations will improve current representations of the carbon budget of the global ocean.


2020 ◽  
Vol 12 (5) ◽  
pp. 840 ◽  
Author(s):  
Dabin Lee ◽  
SeungHyun Son ◽  
HuiTae Joo ◽  
Kwanwoo Kim ◽  
Myung Joon Kim ◽  
...  

In recent years, the change of marine environment due to climate change and declining primary productivity have been big concerns in the East/Japan Sea, Korea. However, the main causes for the recent changes are still not revealed clearly. The particulate organic carbon (POC) to chlorophyll-a (chl-a) ratio (POC:chl-a) could be a useful indicator for ecological and physiological conditions of phytoplankton communities and thus help us to understand the recent reduction of primary productivity in the East/Japan Sea. To derive the POC in the East/Japan Sea from a satellite dataset, the new regional POC algorithm was empirically derived with in-situ measured POC concentrations. A strong positive linear relationship (R2 = 0.6579) was observed between the estimated and in-situ measured POC concentrations. Our new POC algorithm proved a better performance in the East/Japan Sea compared to the previous one for the global ocean. Based on the new algorithm, long-term POC:chl-a ratios were obtained in the entire East/Japan Sea from 2003 to 2018. The POC:chl-a showed a strong seasonal variability in the East/Japan Sea. The spring and fall blooms of phytoplankton mainly driven by the growth of large diatoms seem to be a major factor for the seasonal variability in the POC:chl-a. Our new regional POC algorithm modified for the East/Japan Sea could potentially contribute to long-term monitoring for the climate-associated ecosystem changes in the East/Japan Sea. Although the new regional POC algorithm shows a good correspondence with in-situ observed POC concentrations, the algorithm should be further improved with continuous field surveys.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
S. Hernández-León ◽  
R. Koppelmann ◽  
E. Fraile-Nuez ◽  
A. Bode ◽  
C. Mompeán ◽  
...  

AbstractThe biological pump transports organic carbon produced by photosynthesis to the meso- and bathypelagic zones, the latter removing carbon from exchanging with the atmosphere over centennial time scales. Organisms living in both zones are supported by a passive flux of particles, and carbon transported to the deep-sea through vertical zooplankton migrations. Here we report globally-coherent positive relationships between zooplankton biomass in the epi-, meso-, and bathypelagic layers and average net primary production (NPP). We do so based on a global assessment of available deep-sea zooplankton biomass data and large-scale estimates of average NPP. The relationships obtained imply that increased NPP leads to enhanced transference of organic carbon to the deep ocean. Estimated remineralization from respiration rates by deep-sea zooplankton requires a minimum supply of 0.44 Pg C y−1 transported into the bathypelagic ocean, comparable to the passive carbon sequestration. We suggest that the global coupling between NPP and bathypelagic zooplankton biomass must be also supported by an active transport mechanism associated to vertical zooplankton migration.


2009 ◽  
Vol 6 (11) ◽  
pp. 2333-2353 ◽  
Author(s):  
M. Vichi ◽  
S. Masina

Abstract. Global Ocean Biogeochemistry General Circulation Models are useful tools to study biogeochemical processes at global and large scales under current climate and future scenario conditions. The credibility of future estimates is however dependent on the model skill in capturing the observed multi-annual variability of firstly the mean bulk biogeochemical properties, and secondly the rates at which organic matter is processed within the food web. For this double purpose, the results of a multi-annual simulation of the global ocean biogeochemical model PELAGOS have been objectively compared with multi-variate observations from the last 20 years of the 20th century, both considering bulk variables and carbon production/consumption rates. Simulated net primary production (NPP) is comparable with satellite-derived estimates at the global scale and when compared with an independent data-set of in situ observations in the equatorial Pacific. The usage of objective skill indicators allowed us to demonstrate the importance of comparing like with like when considering carbon transformation processes. NPP scores improve substantially when in situ data are compared with modeled NPP which takes into account the excretion of freshly-produced dissolved organic carbon (DOC). It is thus recommended that DOC measurements be performed during in situ NPP measurements to quantify the actual production of organic carbon in the surface ocean. The chlorophyll bias in the Southern Ocean that affects this model as well as several others is linked to the inadequate representation of the mixed layer seasonal cycle in the region. A sensitivity experiment confirms that the artificial increase of mixed layer depths towards the observed values substantially reduces the bias. Our assessment results qualify the model for studies of carbon transformation in the surface ocean and metabolic balances. Within the limits of the model assumption and known biases, PELAGOS indicates a net heterotrophic balance especially in the more oligotrophic regions of the Atlantic during the boreal winter period. However, at the annual time scale and over the global ocean, the model suggests that the surface ocean is close to a weakly positive autotrophic balance in accordance with recent experimental findings and geochemical considerations.


Author(s):  
Alan Frendy Koropitan ◽  
Safwan Hadi ◽  
Ivonne M.Radjawane

Princeton Ocean Model (POM) was used to calculate the tidal current in Lampung Bay using diagnostic mode. The model was forced by tidal elevation, which was given along the open boundary using a global ocean tide model-ORITIDE. The computed tidal elevation at St. 1 and St 2 are in a good agreement with the observed data, but the computed tidal current at St 1 at depth 2 m is not good and moderate approximation is showed at depth 10 m. Probably, it was influenced by non-linier effect of coastal geometry and bottom friction because of the position of current meter, mooring closed to the coastline. Generally, the calculated tidal currents in all layers show that the water flows into the bay during flood tide and goes out from the bay during ebb tide. The tidal current becomes strong when passing through the narrow passage of Pahawang Strait. The simulation of residual tidal current with particular emphasis on predominant contituent of M2 shows a strong inflow from the western part of the bay mouth, up to the central part of the bay, then the strong residual current deflects to the southeast and flows out from the eastern part of the bay mouth. This flow pattern is apparent in the upper and lower layer. The other part flows to the bay head and froms an antic lockwise circulation in the small basin region of the bay head. The anticlockwise circulations are showed in the upper layer and disappear in the layer near the bottom. Keywords: POM, diagnostic mode, tidal current, residual current, Lampung Ba.


Sign in / Sign up

Export Citation Format

Share Document