scholarly journals Implementation of the Community Earth System Model (CESM1, version 1.2.1) as a new basemodel into version 2.50 of the MESSy framework

2015 ◽  
Vol 8 (8) ◽  
pp. 6523-6550
Author(s):  
A. J. G. Baumgaertner ◽  
P. Jöckel ◽  
A. Kerkweg ◽  
R. Sander ◽  
H. Tost

Abstract. The Community Earth System Model (CESM1), maintained by the United States National Centre for Atmospheric Research (NCAR) is connected with the Modular Earth Submodel System (MESSy). For the MESSy user community, this offers many new possibilities. The option to use the CESM1(CAM) atmospheric dynamical cores, especially the spectral element (SE) core, as an alternative to the ECHAM5 spectral transform dynamical core will provide scientific and computational advances for atmospheric chemistry and climate modelling with MESSy. The SE dynamical core does not require polar filters since the grid is quasi-uniform. By advecting the surface pressure rather then the logarithm of surface pressure the SE core locally conserves energy and mass. Furthermore, it has the possibility to scale to up to 105 compute cores, which is useful for current and future computing architectures. The well-established finite volume core from CESM1(CAM) is also made available. This offers the possibility to compare three different atmospheric dynamical cores within MESSy. Additionally, the CESM1 land, river, sea ice, glaciers and ocean component models can be used in CESM1/MESSy simulations, allowing to use MESSy as a comprehensive Earth System Model. For CESM1/MESSy setups, the MESSy process and diagnostic submodels for atmospheric physics and chemistry are used together with one of the CESM1(CAM) dynamical cores; the generic (infrastructure) submodels support the atmospheric model component. The other CESM1 component models as well as the coupling between them use the original CESM1 infrastructure code and libraries, although in future developments these can also be replaced by the MESSy framework. Here, we describe the structure and capabilities of CESM1/MESSy, document the code changes in CESM1 and MESSy, and introduce several simulations as example applications of the system. The Supplements provide further comparisons with the ECHAM5/MESSy atmospheric chemistry (EMAC) model and document the technical aspects of the connection in detail.

2016 ◽  
Vol 9 (1) ◽  
pp. 125-135 ◽  
Author(s):  
A. J. G. Baumgaertner ◽  
P. Jöckel ◽  
A. Kerkweg ◽  
R. Sander ◽  
H. Tost

Abstract. The Community Earth System Model (CESM1), maintained by the United States National Centre for Atmospheric Research (NCAR) is connected with the Modular Earth Submodel System (MESSy). For the MESSy user community, this offers many new possibilities. The option to use the Community Atmosphere Model (CAM) atmospheric dynamical cores, especially the state-of-the-art spectral element (SE) core, as an alternative to the ECHAM5 spectral transform dynamical core will provide scientific and computational advances for atmospheric chemistry and climate modelling with MESSy. The well-established finite volume core from CESM1(CAM) is also made available. This offers the possibility to compare three different atmospheric dynamical cores within MESSy. Additionally, the CESM1 land, river, sea ice, glaciers and ocean component models can be used in CESM1/MESSy simulations, allowing the use of MESSy as a comprehensive Earth system model (ESM). For CESM1/MESSy set-ups, the MESSy process and diagnostic submodels for atmospheric physics and chemistry are used together with one of the CESM1(CAM) dynamical cores; the generic (infrastructure) submodels support the atmospheric model component. The other CESM1 component models, as well as the coupling between them, use the original CESM1 infrastructure code and libraries; moreover, in future developments these can also be replaced by the MESSy framework. Here, we describe the structure and capabilities of CESM1/MESSy, document the code changes in CESM1 and MESSy, and introduce several simulations as example applications of the system. The Supplements provide further comparisons with the ECHAM5/MESSy atmospheric chemistry (EMAC) model and document the technical aspects of the connection in detail.


2012 ◽  
Vol 5 (2) ◽  
pp. 369-411 ◽  
Author(s):  
J.-F. Lamarque ◽  
L. K. Emmons ◽  
P. G. Hess ◽  
D. E. Kinnison ◽  
S. Tilmes ◽  
...  

Abstract. We discuss and evaluate the representation of atmospheric chemistry in the global Community Atmosphere Model (CAM) version 4, the atmospheric component of the Community Earth System Model (CESM). We present a variety of configurations for the representation of tropospheric and stratospheric chemistry, wet removal, and online and offline meteorology. Results from simulations illustrating these configurations are compared with surface, aircraft and satellite observations. Major biases include a negative bias in the high-latitude CO distribution, a positive bias in upper-tropospheric/lower-stratospheric ozone, and a positive bias in summertime surface ozone (over the United States and Europe). The tropospheric net chemical ozone production varies significantly between configurations, partly related to variations in stratosphere-troposphere exchange. Aerosol optical depth tends to be underestimated over most regions, while comparison with aerosol surface measurements over the United States indicate reasonable results for sulfate , especially in the online simulation. Other aerosol species exhibit significant biases. Overall, the model-data comparison indicates that the offline simulation driven by GEOS5 meteorological analyses provides the best simulation, possibly due in part to the increased vertical resolution (52 levels instead of 26 for online dynamics). The CAM-chem code as described in this paper, along with all the necessary datasets needed to perform the simulations described here, are available for download at www.cesm.ucar.edu.


2014 ◽  
Vol 7 (6) ◽  
pp. 8875-8940 ◽  
Author(s):  
S. Tilmes ◽  
J.-F. Lamarque ◽  
L. K. Emmons ◽  
D. E. Kinnison ◽  
P.-L. Ma ◽  
...  

Abstract. The Community Atmosphere Model (CAM), version 5, is now coupled to extensive tropospheric and stratospheric chemistry, called CAM5-chem, and is available in addition to CAM4-chem in the Community Earth System Model (CESM) version 1.2. Both configurations are well suited as tools for atmospheric-chemistry modeling studies in the troposphere and lower stratosphere, whether with internally derived "free running" (FR) meteorology, or "specified dynamics" (SD). The main focus of this paper is to compare the performance of these configurations against observations from surface, aircraft, and satellite, as well as understand the origin of the identified differences. We particularly focus on comparing present-day methane lifetime estimates within the different model configurations, which range between 7.8 years in the SD configuration of CAM5-chem and 8.8 years in the FR configuration of CAM4-chem. We find that tropospheric surface area density is an important factor in controlling the burden of the hydroxyl radical (OH), which causes differences in tropical methane lifetime of about half a year between CAM4-chem and CAM5-chem. In addition, different distributions of nitrogen oxides (NOx) produced from lightning production explain about half of the difference between SD and FR model versions in both CAM4-chem and CAM5-chem. Remaining differences in the tropical OH burden are due to enhanced tropical ozone burden in SD configurations compared to the FR versions, which are not only caused by differences in chemical production or loss, but also by transport and mixing. For future studies, we recommend the use of CAM5-chem, due to improved aerosol description and inclusion of aerosol-cloud interactions. However, smaller tropospheric surface area density in the current version of CAM5-chem compared to CAM4-chem results in larger oxidizing capacity in the troposphere and therefore a shorter methane lifetime.


2020 ◽  
Author(s):  
Yaman Liu ◽  
Xinyi Dong ◽  
Minghuai Wang ◽  
Louisa K. Emmons ◽  
Yawen Liu ◽  
...  

Abstract. Organic aerosol (OA) has been considered as one of the most important uncertainties in climate modeling due to the complexity in presenting its chemical production and depletion mechanisms. To better understand the capability of climate models and probe into the associated uncertainties in simulating OA, we evaluate the Community Earth System Model version 2.1 (CESM2.1) configured with the Community Atmosphere Model version 6 (CAM6) with comprehensive tropospheric and stratospheric chemistry representation (CAM6-Chem), through a long-term simulation (1988–2019) with observations collected from multiple datasets in the United States. We find that CESM generally reproduces the inter-annual variation and seasonal cycle of OA mass concentration at surface layer with correlation of 0.40 as compared to ground observations, and systematically overestimates (69 %) in summer and underestimates (−19 %) in winter. Through a series of sensitivity simulations, we reveal that modeling bias is primarily related to the dominant fraction of monoterpene-formed secondary organic aerosol (SOA), and a strong positive correlation of 0.67 is found between monoterpene emission and modeling bias in eastern US during summer. In terms of vertical profile, the model prominently underestimates OA and monoterpene concentrations by 37–99 % and 82–99 % respectively in the upper air (> 500 m) as validated against aircraft observations. Our study suggests that the current Volatility Basis Set (VBS) scheme applied in CESM might be parameterized with too high monoterpene SOA yields which subsequently result in strong SOA production near emission source area. We also find that the model has difficulty in reproducing the decreasing trend of surface OA in southeast US, probably because of employing pure gas VBS to represent isoprene SOA which is in reality mainly formed through multiphase chemistry, thus the influence of aerosol acidity and sulfate particle change on isoprene SOA formation has not been fully considered in the model. This study reveals the urgent need to improve the SOA modeling in climate models.


2014 ◽  
Vol 14 (18) ◽  
pp. 9925-9939 ◽  
Author(s):  
A. Khodayari ◽  
S. Tilmes ◽  
S. C. Olsen ◽  
D. B. Phoenix ◽  
D. J. Wuebbles ◽  
...  

Abstract. The interaction between atmospheric chemistry and ozone (O3) in the upper troposphere–lower stratosphere (UTLS) presents a major uncertainty in understanding the effects of aviation on climate. In this study, two configurations of the atmospheric model from the Community Earth System Model (CESM), Community Atmosphere Model with Chemistry, Version 4 (CAM4) and Version 5 (CAM5), are used to evaluate the effects of aircraft nitrogen oxide (NOx = NO + NO2) emissions on ozone and the background chemistry in the UTLS. CAM4 and CAM5 simulations were both performed with extensive tropospheric and stratospheric chemistry including 133 species and 330 photochemical reactions. CAM5 includes direct and indirect aerosol effects on clouds using a modal aerosol module (MAM), whereby CAM4 uses a bulk aerosol module, which can only simulate the direct effect. To examine the accuracy of the aviation NOx-induced ozone distribution in the two models, results from the CAM5 and CAM4 simulations are compared to ozonesonde data. Aviation NOx emissions for 2006 were obtained from the AEDT (Aviation Environmental Design Tool) global commercial aircraft emissions inventory. Differences between simulated O3 concentrations and ozonesonde measurements averaged at representative levels in the troposphere and different regions are 13% in CAM5 and 18% in CAM4. Results show a localized increase in aviation-induced O3 concentrations at aviation cruise altitudes that stretches from 40° N to the North Pole. The results indicate a greater and more disperse production of aviation NOx-induced ozone in CAM5, with the annual tropospheric mean O3 perturbation of 1.2 ppb (2.4%) for CAM5 and 1.0 ppb (1.9%) for CAM4. The annual mean O3 perturbation peaks at about 8.2 ppb (6.4%) and 8.8 ppb (5.2%) in CAM5 and CAM4, respectively. Aviation emissions also result in increased hydroxyl radical (OH) concentrations and methane (CH4) loss rates, reducing the tropospheric methane lifetime in CAM5 and CAM4 by 1.69 and 1.40%, respectively. Aviation NOx emissions are associated with an instantaneous change in global mean short-term O3 radiative forcing (RF) of 40.3 and 36.5 mWm−2 in CAM5 and CAM4, respectively.


2021 ◽  
Author(s):  
Yaman Liu ◽  
Xinyi Dong ◽  
Minghuai Wang ◽  
Louisa Emmons ◽  
Yawen Liu ◽  
...  

<p>Organic aerosol (OA) has been considered as one of the most important uncertainties in climate modeling due to the complexity in presenting its chemical production and depletion mechanisms. To better understand the capability of climate models and probe into the associated uncertainties in simulating OA, we evaluate the Community Earth System Model version 2.1 (CESM2.1) configured with the Community Atmosphere Model version 6 (CAM6) with comprehensive tropospheric and stratospheric chemistry representation (CAM6-Chem), through a long-term simulation (1988–2019) with observations collected from multiple datasets in the United States. We find that CESM generally reproduces the inter-annual variation and seasonal cycle of OA mass concentration at surface layer with correlation of 0.40 as compared to ground observations, and systematically overestimates (69 %) in summer and underestimates (-19 %) in winter. Through a series of sensitivity simulations, we reveal that modeling bias is primarily related to the dominant fraction of monoterpene-formed secondary organic aerosol (SOA), and a strong positive correlation of 0.67 is found between monoterpene emission and modeling bias in eastern US during summer. In terms of vertical profile, the model prominently underestimates OA and monoterpene concentrations by 37–99 % and 82–99 % respectively in the upper air (>500 m) as validated against aircraft observations. Our study suggests that the current Volatility Basis Set (VBS) scheme applied in CESM might be parameterized with too high monoterpene SOA yields which subsequently result in strong SOA production near emission source area. We also find that the model has difficulty in reproducing the decreasing trend of surface OA in southeast US, probably because of employing pure gas VBS to represent isoprene SOA which is in reality mainly formed through multiphase chemistry, thus the influence of aerosol acidity and sulfate particle change on isoprene SOA formation has not been fully considered in the model. This study reveals the urgent need to improve the SOA modeling in climate models.</p>


2020 ◽  
Vol 55 (3) ◽  
pp. 420-436
Author(s):  
Greicy Kelly Da Silva ◽  
Cleiton Da Silva Silveira ◽  
Marx Vinicius Maciel da Silva ◽  
Antônio Duarte Marcos ◽  
Francisco De Assis Souza ◽  
...  

A fim de obter informações acerca dos possíveis impactos no regime doscampos de precipitação e no regime de temperatura nas regiões hidrográficasbrasileiras em decorrência do aumento das emissões de gases de efeito estufa,este trabalho teve como objetivo analisar as projeções resultantes de novemodelos participantes do Coordinated Regional Climate Downscaling Experiment(CORDEX), considerando os cenários representative concentration pathways(RCP) 4.5 e RCP8.5 para o século XXI. Os modelos utilizados foram: Canadian Centrefor Climate Modelling and Analysis – Canadian Earth System Model (The secondgeneration) (CCCma-CanESM2), Commonwealth Scientific and IndustrialResearch Organization (version Mk3-6-0) (CSIRO-Mk3-6-0), Irish Centre for HighEnd Computing – European Community – EARTH (ICHEC-EC-EARTH), InstitutPierre Simon Laplace – 5 Component Models version A – Medium Resolution(IPSL-CMSA-MR), Model for Interdisciplinary Research on Climate version 5(MIROC5), Hadley Center Global Environment Model version 2 – Earth System(HadGEM2-ES), Max Planck Institute – Meteorology – Earth System Model (MPIM-ESM), Norwegian Climate Centre – Norwegian Earth System Model version1 – Medium resolution (NCC-NorESM1-M) e National Oceanic and AtmosphericAdministration – Geophysical Fluid Dynamics Laboratory – Earth System Modelversion 2M (NOAA-GFDL-ESM2M). Foram analisadas as anomalias e a tendênciados campos de precipitação e temperatura médias anuais no período de 2006a 2095. Todos os modelos projetaram aumento da temperatura em todas asregiões. Para o cenário RCP8.5, a anomalia da temperatura indicou aumentode até 1,58ºC na região hidrográfica amazônica. A precipitação também podeaumentar em algumas regiões hidrográficas. A mediana das anomalias sugeriuaumentos entre 10 e 30% no Atlântico Leste, Atlântico Nordeste Ocidental,Atlântico Nordeste Oriental, Paraguai, Parnaíba, Tocantins-Araguaia e SãoFrancisco. Anomalias negativas foram identificadas no sudeste e principalmenteno sul do Brasil, indicando reduções na precipitação. O teste de Mann-Kendall-Sen sugeriu uma possível intensificação no regime de precipitações anuais emgrande parte das regiões hidrográficas, exceto as do Atlântico Sul, Paraná eUruguai. Em ambos os cenários, o teste apontou ausência de tendência na regiãodo Atlântico Sul pela maioria dos modelos. Todos os modelos apresentaramtendência positiva significativa para a temperatura nos dois cenários e em todasas regiões. A maior e a menor tendência de aquecimento foram observadas nonorte e no sul do país, respectivamente.


Author(s):  
Liang Chen ◽  
Trent W. Ford ◽  
Priyanka Yadav

AbstractFlash droughts are noted by their unusually rapid rate of onset or intensification, which makes it difficult to anticipate and prepare for them, thus resulting in severe impacts. Although the development of flash drought can be associated with certain atmospheric conditions, vegetation also plays a role in propagating flash drought. This study examines the climatology of warm season (Mar–Sep) flash drought occurrence in the United States (US) between 1979-2014, and quantifies the possible impacts of vegetation on flash drought based on a set of sensitivity experiments using the Community Earth System Model version 2 (CESM). With atmospheric nudging, CESM well captures historical flash drought. Compared with NASA's Modern-Era Retrospective Analysis for Research and Applications version 2 (MERRA-2) and National Climate Assessment - Land Data Assimilation System (NCA-LDAS), CESM shows agreement on the high flash drought frequency in the Great Plains and southeastern US, but overestimates flash drought occurrence in the Midwest. The vegetation sensitivity experiments suggest that vegetation greening can significantly increase the flash drought frequency in the Great Plains and the western US during the warm seasons through enhanced evapotranspiration. However, flash drought occurrence is not significantly affected by vegetation phenology in the eastern US and Midwest due to weak land-atmosphere coupling. In response to vegetation greening, the extent of flash drought also increases, but the duration of flash drought is not sensitive to greening. This study highlights the importance of vegetation in flash drought development, and provides insights for improving flash drought monitoring and early warning.


2014 ◽  
Vol 14 (5) ◽  
pp. 6163-6202
Author(s):  
A. Khodayari ◽  
S. Tilmes ◽  
S. C. Olsen ◽  
D. B. Phoenix ◽  
D. J. Wuebbles ◽  
...  

Abstract. The interaction between atmospheric chemistry and ozone (O3) in the upper troposphere and lower stratosphere (UTLS) presents a major uncertainty in understanding the effects of aviation on climate. In this study, two configurations of the atmospheric model from the Community Earth System Model (CESM), CAM4 and CAM5, are used to evaluate the effects of aircraft nitrogen oxide (NOx = NO + NO2) emissions on ozone and the background chemistry in the UTLS. CAM4 and CAM5 simulations were both performed with extensive tropospheric and stratospheric chemistry including 133 species and 330 photochemical reactions. CAM5 includes direct and indirect aerosol effects on clouds using a modal aerosol module (MAM) whereby CAM4 uses a bulk aerosol module which can only simulate the direct effect. To examine the accuracy of the aviation NOx induced ozone distribution in the two models, results from the CAM5 and CAM4 simulations are compared to ozonesonde data. Aviation NOx emissions for 2006 were obtained from the AEDT (Aviation Environmental Design Tool) global commercial aircraft emissions inventory. Differences between simulated O3 concentrations and ozonesonde measurements averaged at representative levels in the troposphere and different regions are 13% in CAM5 and 18% in CAM4. Results show a localized increase in aviation induced O3 concentrations at aviation cruise altitudes that stretches from 40° N to the North Pole. The results indicate a greater and more disperse production of aviation NOx-induced ozone in CAM5, with the annual tropospheric mean O3 perturbation of 1.3 ppb (2.7%) for CAM5 and 1.0 ppb (1.9%) for CAM4. The annual mean O3 perturbation peaks at about 8.3 ppb (6.4%) and 8.8 ppb (5.2%) in CAM5 and CAM4, respectively. Aviation emissions also result in increased OH concentrations and methane (CH4) loss rates, reducing the tropospheric methane lifetime in CAM5 and CAM4 by 1.9% and 1.40%, respectively. Aviation NOx emissions are associated with a change in global mean O3 radiative forcing (RF) of 43.9 and 36.5 mW m−2 in CAM5 and CAM4, respectively.


Sign in / Sign up

Export Citation Format

Share Document