A baseline Antarctic GIA correction for space gravimetry

2020 ◽  
Author(s):  
Lambert Caron ◽  
Erik Ivins

<p class="western"><span>Within the past decade, newly collected GPS data and geochronological constraints have resulted in refinement of glacial isostatic adjustment (GIA) models for Antarctica. These are critical to understanding ice mass changes at present-day. A correction needs to be made when using space gravity for ice mass balance assessments as any vertical movements of the solid Earth masquerade as changes in ice mass, and must be carefully removed. The main upshot of the new Antarctic GIA models is a downward revision of negative ice mass trends deduced from the Gravity Recovery and Climate Experiment (GRACE), resulting from a reduced GIA correction. This revision places GRACE inferred trend in mass balance within the 1-σ uncertainty of mass balance deduced by altimetry. Because uncertainties in Holocene ice history and the low viscosity rheology beneath the West Antarctic Ice Sheet (WAIS) continue to vex further improvement in predictions of present-day GIA gravity rate, more emphasis has been given to regional-scale GIA models. Here we use a Bayesian method to explore the gravimetric GIA trend over Antarctica, both with and without the impact of a late Pleistocene Antarctic ice loads, along with the contribution of oceanic loads. We call this model without loads associated with Antarctica a baseline for regional GIA models to build upon. We consider variations of the radial mantle viscosity profile and the volume of continental-scale ice sheets during the last glacial cycle. The modeled baseline GIA is mainly controlled by the lower mantle viscosity and continental levering caused by ocean loading. We find that the predicted baseline GIA correction weakly depends on the ice history. This correction averages to +28.4 [16.5–41.9, 95% confidence] Gt/yr. In contrast, with Pleistocene Antarctic-proximal ice included, the total modeled mass trend due to GIA is +73.7 [30.1–114.7] Gt/yr. A baseline GIA correction of 28.4 Gt/yr is of order 50% of the mean net mass trend measured during the period 1992-2017. The statistical analysis provides tools for synthesizing any regional Antarctic GIA model with a self-consistent far-field component. This may prove important for accounting for both global and regional 3-D variations in mantle viscosity.</span></p> <p class="western"><span>© 2020 California Institute of Technology.<br />Government sponsorship acknowledged. This work was performed at the California Institute of Technology's Jet Propulsion Laboratory under a contract with the National Aeronautics and Space Administration's Cryosphere Science Program. </span></p>

2015 ◽  
Vol 8 (10) ◽  
pp. 3199-3213 ◽  
Author(s):  
K. Le Morzadec ◽  
L. Tarasov ◽  
M. Morlighem ◽  
H. Seroussi

Abstract. To investigate ice sheet evolution over the timescale of a glacial cycle, 3-D ice sheet models (ISMs) are typically run at "coarse" grid resolutions (10–50 km) that do not resolve individual mountains. This will introduce to-date unquantified errors in sub-grid (SG) transport, accumulation and ablation for regions of rough topography. In the past, synthetic hypsometric curves, a statistical summary of the topography, have been used in ISMs to describe the variability of these processes. However, there has yet to be detailed uncertainty analysis of this approach. We develop a new flow line SG model for embedding in coarse resolution models. A 1 km resolution digital elevation model was used to compute the local hypsometric curve for each coarse grid (CG) cell and to determine local parameters to represent the hypsometric bins' slopes and widths. The 1-D mass transport for the SG model is computed with the shallow ice approximation. We test this model against simulations from the 3-D Ice Sheet System Model (ISSM) run at 1 km grid resolution. Results show that none of the alternative parameterizations explored were able to adequately capture SG surface mass balance and flux processes. Via glacial cycle ensemble results for North America, we quantify the impact of SG model coupling in an ISM. We show that SG process representation and associated parametric uncertainties, related to the exchange of ice between the SG and CG cells, can have significant (up to 35 m eustatic sea level equivalent for the North American ice complex) impact on modelled ice sheet evolution.


1949 ◽  
Vol 16 (1) ◽  
pp. 39-52
Author(s):  
Merit P. White

Abstract An analysis of longitudinal impact tests that were made by Drs. D. S. Clark and P. E. Duwez at the California Institute of Technology on an iron and a steel with definite yield points is described. From this analysis is deduced the probable nature of the dynamic stress-strain relations for such materials. These appear to differ greatly from the static stress-strain relations, unlike the case for materials without yield points. As pointed out by Duwez and Clark, the upper yield stress for undeformed material is several times as great under impact as the static yield stress. The present analysis indicates that under impact, the material with a definite yield point is made harder at a given deformation, and ruptures at a higher (engineering) stress and smaller strain than when loaded statically. The critical impact velocity, defined as that at which nearly instantaneous failure occurs in tension, is discussed, and the factors upon which it depends are given.


2021 ◽  
Author(s):  
Marie Ygouf ◽  
Charles A Beichman ◽  
Graça M Rocha ◽  
Joseph J Green ◽  
Jewell Jeffrey B ◽  
...  

<div>  The James Webb Space Telescope (JWST) will probe circumstellar environments at an unprecedented sensitivity. However, the performance of high-contrast imaging instruments is limited by the residual light from the star at close separations (<2-3”), where the incidence of exoplanets increases rapidly. There is currently no solution to get rid of the residual light down to the photon noise level at those separations, which may prevent some crucial discoveries.</div> <div>  We are further developing and implementing a potentially game-changing technique of post-processing that does not require the systematic observation of a reference star, but instead directly uses data from the science target by taking advantage of the technique called “phase retrieval”. This technique is built on a Bayesian framework that provides a more robust determination of faint astrophysical structures around a bright source.</div> <div>  This approach uses a model of instrument that takes advantage of prior information, such as data from wavefront sensing operations on JWST, to estimate instrumental aberrations and further push the limits of high-contrast imaging. With this approach, our goal is to improve the contrast that can be achieved with JWST instruments.</div> <div>  We were awarded a JWST GO-Calibration proposal to implement, test and validate this approach on NIRCam imaging and coronagraphic imaging. This work will pave the way for the future space-based high-contrast imaging instruments such as the Nancy Grace Roman Space Telescope Coronagraph Instrument (Roman CGI). This technique will be crucial to make the best use of the telemetry data that will be collected during the CGI operations.</div> <div>  <br />“© 2021 California Institute of Technology. Government sponsorship acknowledged. The research was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. This document has been reviewed and determined not to contain export controlled data.”</div>


Sign in / Sign up

Export Citation Format

Share Document