static yield
Recently Published Documents


TOTAL DOCUMENTS

81
(FIVE YEARS 9)

H-INDEX

17
(FIVE YEARS 2)

2021 ◽  
Vol 9 ◽  
Author(s):  
Xuanyi Chen ◽  
Xiaofei Jing ◽  
Yulong Chen ◽  
Changshu Pan ◽  
Wensong Wang

The risk of tailings dam-break disaster is dependent on the type of slurry and its flow characteristics. The flow characteristics of slurry surging from tailings dams collapse are directly influenced by grain size, breach width, slurry concentration, and surface roughness of the gully. Among these parameters, slurry concentration plays the most critical role, but there are few studies on it. This paper focuses on the flow characteristics of slurry with different concentrations, and a series of flume experiments were carried out to obtain the flow characteristics of inundated height, impact force, and velocity in 30%, 40%, 50%, and 60% concentrations. The study confirms that the concentration of slurry has a significant influence on the flow characteristics. Through the experimental study, it is observed that, with the decreasing of slurry concentration, the impact force and velocity of slurry increased in varying degrees; on the contrary, the flow height elevated with the slurry concentration decreasing. The main reason is that the higher the slurry concentration, the higher the static yield stress and viscosity—in varying degrees. The results can provide a detailed understanding of the slurry concentration influence on the flow characteristics, which guides the evacuation time and height downstream.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4622 ◽  
Author(s):  
Yu Wang ◽  
Yaqing Jiang ◽  
Tinghong Pan ◽  
Kangting Yin

The shape retention ability of materials deposited layer by layer is called buildability, which is an indispensable performance parameter for successful 3D printable cementitious materials (3DPC). This study investigated the synergistic effect of nano-clay (NC) and thixotropic superplasticizer (TP) on the buildability of 3DPC. The rheological parameters and static yield stress are characterized by the rheology testing, the green strength is measured by a self-made pressure tester, and the fluidity is tested by flow table. Results indicate that NC significantly increases the growth rate of static yield stress and green strength and TP can improve the initial rheological parameters and fluidity, which ensures the initial stiffness and workability of printed materials. The mixture with 7‰ (by mass of cementitious materials) NC and 3‰ TP obtains excellent extrudability and buildability, due to the synergistic effect of NC and TP. Based on the rheology testing and specific printing experiments, a printable window with 1.0 Pa/s~2.0 Pa/s of the rate of static yield stress evolution over time (RST) or 170 mm~200 mm of fluidity is established. This work provides theorical support for the control and evaluation of rheological properties in 3DPC.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1551 ◽  
Author(s):  
Irina Ivanova ◽  
Viktor Mechtcherine

With increasing interest in the use of additive manufacturing techniques in the construction industry, static rheological properties of fresh concrete have necessarily come into focus. In particular, the knowledge and control of static yield stress (SYS) and its development over time are crucial for mastering formwork-free construction, e.g., by means of layered extrusion. Furthermore, solid understanding of the influences of various concrete constituents on the initial SYS of the mixture and the structural build-up rate is required for purposeful material design. This contribution is concentrated on the effect of aggregates on these rheological parameters. The volume fraction of aggregates was varied in the range of 35% to 55% by volume under condition of constant total surface area of the particles. The total surface area per unit volume of cement paste was equal to 5.00, 7.25 and 10.00 m²/L, conditioned on the constant volume fraction of aggregates. Both variations were enabled by changing the particle size distributions of the aggregates while holding the cement paste composition constant for all concrete mixtures. To characterise the SYS and the structural build-up, constant shear rate tests with a vane-geometry rotational rheometer were performed. It was found that in the ranges under investigation the variation in volume fraction had a more pronounced effect on the static rheological properties of concrete than did the variation in surface area. An accurate mathematical description of the relationship between the initial SYS of concrete and the relative volume fraction of aggregate based on the Chateau–Ovarlez–Trung model was proposed. Challenges in deriving a similar relationship for the structural build-up rate of concrete were highlighted.


Author(s):  
Irina Ivanova ◽  
Viktor Mechtcherine

With increasing interest in the use of additive manufacturing techniques in the construction industry, static rheological properties of fresh concrete have necessarily come into focus. In particular, the knowledge and control of static yield stress (SYS) and its development over time are crucial for mastering formwork-free construction, e.g. by means of layered extrusion. Furthermore, solid understanding of the influences of various concrete constituents on the initial SYS of the mixture and the structural build-up rate is required for purposeful material design. This contribution is concentrated on the effect of aggregates on these rheological parameters. The volume fraction of aggregates was varied in the range of 35 to 55 % by volume under condition of constant total surface area of the particles. The total surface area per unit volume of cement paste was equal to 5.00, 7.25 and 10.00 m²/l, conditioned on the constant volume fraction of aggregates. Both variations were enabled by changing the particle size distributions of the aggregates while holding the cement paste composition constant for all concrete mixtures. To characterise the SYS and the structural build-up, constant shear rate tests with a vane-geometry rotational rheometer were performed. It was found that in the ranges under investigation the variation in volume fraction had a more pronounced effect on the static rheological properties of concrete than did the variation in surface area. An accurate mathematical description of the relationship between the initial SYS of concrete and the relative volume fraction of aggregate based on the Chateau-Ovarlez-Trung model was proposed. Challenges in deriving a similar relationship for the structural build-up rate of concrete were highlighted.


2019 ◽  
Vol 9 (22) ◽  
pp. 4744
Author(s):  
Sueng-Won Jeong

In this paper, shear rate-dependent rheological properties of mine tailings taken from abandoned mine deposits prone to mass movements are examined using a commercial ball-measuring rheological system. The yield stresses (i.e., dynamic and static yield stresses) and viscosity of sand-rich materials are examined by the shear rate-controlled flow curve and time-dependent stress growth methods. Before yielding, the shear stress reaches a peak value (i.e., yield stress) observed for all flow curves. In the steady-state condition, the materials have a minimum shear stress (i.e., dynamic yield stress). The static yield stress can be determined under a constant applied shear rate with different initial values ranging from 10−4 to 10−1 s−1. As a result, the Bingham yield stress and viscosity can be used as a first approximation for estimating the debris flow mobility of post-failure materials. However, the Bingham yield stress is competitive with the static yield stress measured from stress growth methods. Upon comparison of the dynamic and static yield stresses, the static yield stress is approximately 35–45 times greater than the dynamic yield stress, and may be strongly related to microstructural changes (i.e., thixotropy). In this context, special attention must be paid to the determination of yield stresses in debris flow mitigation programs.


2019 ◽  
Vol 39 (5) ◽  
pp. 427-434 ◽  
Author(s):  
Ahmad Shakeel ◽  
Alex Kirichek ◽  
Claire Chassagne

Abstract Mud is a cohesive material which contains predominantly clay minerals, water, organic matter and some amounts of silt and sand. Mud samples can have complex rheological behaviour, displaying viscoelasticity, shear-thinning, thixotropy and yield stress. In this study, influence of organic matter on the rheological behaviour of different mud samples having similar densities is investigated. Four samples, collected from different locations and depths of Port of Hamburg (Germany) were selected. Two samples with the density of about 1210 kg/m3 and two samples with the density of about 1090 kg/m3 were analysed by different rheological tests, including stress ramp-up tests, flow curves, thixotropic tests, oscillatory amplitude and frequency sweep tests. Two yield stress regions (with two yield stress values stated as “static” and “fluidic” yield stresses) were identified for all the samples, and these regions, corresponding to a structural change of the samples were significantly different from sample to sample due to the differences in organic matter content. For lower density samples, the ratio of fluidic to static yield stress increased from 3 to 4.4 while it increased from 4.4 to 5.2 in case of higher density samples, by increasing the organic matter content. The thixotropic studies showed that the mud samples having lowest organic matter content (VH and KBZ) exhibit a combination of thixotropic and anti-thixotropic behaviours. The results of frequency sweep tests revealed the solid-like character of the mud within the linear viscoelastic regime. Mud samples having higher organic matter content (RV and RT) had a higher complex modulus (417 Pa and 7909 Pa) than the ones with lower organic matter content (13 Pa and 1774 Pa), for a given density. This study demonstrated that the density only is not a sufficient criterion to predict the rheology of different mud. Furthermore, even small amounts of organic matter content change significantly the mud rheological behaviour.


2019 ◽  
Vol 135 ◽  
pp. 03072 ◽  
Author(s):  
E. Grigoryan ◽  
A. Babanina ◽  
Andrey Eropkin

The method of full or partial automation of masonry of stone structures has great prospects. A big hindrance to the development of 3D technology in construction is the need to adapt the concrete mixture to the narrow aperture of the nozzle of the extrusion die. In additive manufacturing, known as 3D printing, properties such as the static and dynamic yield stresses of jointing materials play a main role. The purpose of this article is to define the most optimal concrete mix solution for a printing extruder, which will have the highest rheological indices. In the article was considered the scheme of solution feeding system. The optimum percentage relationship of raw materials included in the watercement solution for further feeding through the nozzle was calculated. The static yield strength of the concrete mixture exceeds 5000 Pa, and the dynamic - above 250 Pa.


2018 ◽  
Vol 98 (6) ◽  
pp. 1304-1320
Author(s):  
L.A. Thompson ◽  
S.M. Strydhorst ◽  
L.M. Hall ◽  
R.C. Yang ◽  
D. Pauly ◽  
...  

The area sown to barley (Hordeum vulgare L.) in Alberta, Canada, and the rate of yield increase relative to other major crops have declined in recent decades. Advanced agronomic management of feed barley may increase the seeded area and differentially influence cultivar performance. Field experiments were conducted from 2014 to 2016 at 11 rainfed and three irrigated environments in Alberta to evaluate the performance of 10 feed barley cultivars under standard and advanced agronomic management. Advanced management included supplemental postemergence N, the plant growth regulator chlormequat chloride, and two foliar fungicide applications. Cultivars responded similarly to management in the low disease pressure environments encountered in the study. The two-row cultivars CDC Austenson, Xena, and CDC Coalition were the highest yielding overall, while Champion had the greatest yields in moisture-limited environments. The feed grain quality of two-row cultivars was superior to six-row cultivars. Recently released six-row cultivars were among the lowest yielding. Negative or static yield increases were observed for all newer cultivars (2006–2013 registrations) compared with the older cultivar, Xena (2000 registration). In comparison, the overall 9.3% yield increase from advanced management was notable. Advanced management yield increases were greater (8%–18%) in environments with 251–502 mm of precipitation and smaller (1%–3%) in moisture-limited environments. Management had negligible effects on lodging and grain quality. Optimal yield and quality were achieved with the two-row cultivars, CDC Austenson, Xena, or CDC Coalition, and advanced management in high precipitation environments. In environments with less precipitation, optimal yields were achieved with Champion and standard management.


Sign in / Sign up

Export Citation Format

Share Document