scholarly journals Influence of summer and winter climate variability on nitrogen wet deposition in Norway

2008 ◽  
Vol 12 (2) ◽  
pp. 405-414 ◽  
Author(s):  
L. R. Hole ◽  
H. A. de Wit ◽  
W. Aas

Abstract. Dominating wind patterns around Norway may change due to climate warming. This could affect transport of polluted air masses and precipitation. Here, we study relations between reactive nitrogen wet deposition and air mass transport during summer and winter expressed in the form of climate indices, at seven sites in Southern Norway for the period 1980–2005. Atmospheric nitrate concentrations decreased with 0 to 50% in the period, particularly at sites with little precipitation, and mostly during 1990–2005. For comparison, reported reductions in emissions of oxidised nitrogen in Europe in 1989–2003 were 23%. Climate indices explained up to 36% of the variation in winter nitrate deposition at the western and northern sites – and also explained 60% of the variation in winter precipitation (R=0.77). This suggests that the variation in nitrate wet deposition is closely related to variation in precipitation, and that the climate indices seem to also partly control the variation in atmospheric nitrate concentrations (R=−0.45 at coastal sites). At the coastal sites, local air temperature was highly correlated (R=0.84) with winter nitrate deposition, suggesting that warm, humid winter weather results in increased wet nitrate deposition. For ammonia the pattern was similar, but this compound is more influenced by local sources. Expected severe increase in precipitation in western and northern regions as a consequence of climate change suggest that nitrogen deposition in these areas will increase under global warming if emissions are held constant.

2007 ◽  
Vol 4 (5) ◽  
pp. 3087-3112
Author(s):  
L. R. Hole ◽  
H. A. de Wit ◽  
W. Aas

Abstract. Dominating wind patterns around Norway may change due to climate warming. This could affect transport of polluted air masses and precipitation. Here, we study relations between reactive nitrogen wet deposition and air mass transport during summer and winter expressed in the form of climate indices, at seven sites in Southern Norway for the period 1980–2005. Atmospheric nitrate concentrations decreased with 0 to 50% in the period, particularly at sites with little precipitation, and mostly during 1990–2005. For comparison, reported reductions in emissions of oxidised nitrogen in Europe in 1989–2003 were 23%. Climate indices explained up to 36% of the variation in winter nitrate deposition at the western and northern sites – and also explained 60% of the variation in winter precipitation (R=0.77). This suggests that the variation in nitrate wet deposition is closely related to variation in precipitation, and that the climate indices seem to also partly control the variation in atmospheric nitrate concentrations (R=−0.45 at coastal sites). At the coastal sites, local air temperature was highly correlated (R=0.84) with winter nitrate deposition, suggesting that warm, humid winter weather results in increased wet nitrate deposition. For ammonia the pattern was similar, but this compound is more influenced by local sources. Expected severe increase in precipitation in western and northern regions as a consequence of climate change suggest that nitrogen deposition in these areas will increase under global warming if emissions are held constant.


2018 ◽  
Author(s):  
David M. Nelson ◽  
Urumu Tsunogai ◽  
Ding Dong ◽  
Takuya Ohyama ◽  
Daisuke D. Komatsu ◽  
...  

Abstract. Atmospheric nitrate deposition resulting from anthropogenic activities negatively affects human and environmental health. Identifying deposited nitrate that is produced locally vs. that originating from long-distance transport would help inform efforts to mitigate such impacts. However, distinguishing the relative transport distances of atmospheric nitrate in urban areas remains a major challenge since it may be produced locally and/or come from upwind regions. To address this uncertainty we assessed spatiotemporal variation in monthly weighted-average Δ17O and δ15N values of wet and dry nitrate deposition during one year at urban and rural sites along the western coast of the northern Japanese island of Hokkaido, downwind of the East Asian continent. Δ17O values of nitrate in wet deposition at the urban site mirrored those of wet and dry deposition at the rural site, ranging between ~ +22 and +30 ‰ with higher values during winter and lower values in summer, which suggests greater relative importance of oxidation of NO2 by O3 during winter and OH during summer. In contrast, Δ17O values of nitrate in dry deposition at the urban site were lower (+19–+25 ‰) and displayed less distinct seasonal variation. Furthermore, the difference between δ15N values of nitrate in wet and dry nitrate deposition was, on average, 3 ‰ greater at the urban than rural site, and Δ17O and δ15N values were correlated for both forms of deposition at both sites with the exception of dry deposition at the urban site. These results suggest that, relative to nitrate in wet deposition in urban environments and wet and dry deposition in rural environments, nitrate in dry deposition in urban environments forms from relatively greater oxidation of NO by peroxy radicals and/or oxidation of NO2 by OH. Given greater concentrations of peroxy radicals and OH in cities, these results imply that dry nitrate deposition results from local NOx emissions more so than wet deposition, which is transported longer distances. These results illustrate the value of stable isotope data for distinguishing the transport distances and reaction pathways of atmospheric nitrate pollution.


2018 ◽  
Vol 18 (9) ◽  
pp. 6381-6392 ◽  
Author(s):  
David M. Nelson ◽  
Urumu Tsunogai ◽  
Dong Ding ◽  
Takuya Ohyama ◽  
Daisuke D. Komatsu ◽  
...  

Abstract. Atmospheric nitrate deposition resulting from anthropogenic activities negatively affects human and environmental health. Identifying deposited nitrate that is produced locally vs. that originating from long-distance transport would help inform efforts to mitigate such impacts. However, distinguishing the relative transport distances of atmospheric nitrate in urban areas remains a major challenge since it may be produced locally and/or be transported from upwind regions. To address this uncertainty we assessed spatiotemporal variation in monthly weighted-average Δ17O and δ15N values of wet and dry nitrate deposition during one year at urban and rural sites along the western coast of the northern Japanese island of Hokkaido, downwind of the East Asian continent. Δ17O values of nitrate in wet deposition at the urban site mirrored those of wet and dry deposition at the rural site, ranging between  ∼  +23 and +31 ‰ with higher values during winter and lower values in summer, which suggests the greater relative importance of oxidation of NO2 by O3 during winter and OH during summer. In contrast, Δ17O values of nitrate in dry deposition at the urban site were lower (+19 – +25 ‰) and displayed less distinct seasonal variation. Furthermore, the difference between δ15N values of nitrate in wet and dry nitrate deposition was, on average, 3 ‰ greater at the urban than rural site, and Δ17O and δ15N values were correlated for both forms of deposition at both sites with the exception of dry deposition at the urban site. These results suggest that, relative to nitrate in wet and dry deposition in rural environments and wet deposition in urban environments, nitrate in dry deposition in urban environments forms from relatively greater oxidation of NO by peroxy radicals and/or oxidation of NO2 by OH. Given greater concentrations of peroxy radicals and OH in cities, these results imply that dry nitrate deposition results from local NOx emissions more so than wet deposition, which is transported longer distances. These results illustrate the value of stable isotope data for distinguishing the transport distances and reaction pathways of atmospheric nitrate pollution.


Beskydy ◽  
2017 ◽  
Vol 10 (1-2) ◽  
pp. 123-134
Author(s):  
Aleš Farda ◽  
Petr Štěpánek ◽  
Pavel Zahradníček ◽  
Petr Skalák ◽  
Jan Meitner

We have investigated the future changes of climate conditions during the winter season in the Beskids Mountains. During the 21st century mean winter temperature will increase by 2.0–6.3 °C and winter precipitation will increase by 12.5 – to 17.5 % - depending on the scenario. Higher winter temperatures will be reflected in the reduced number of frost days, the number of which may drop by 40 % according to the RCP8.5 scenario. Whilst our study expects general increase in precipitation, higher temperatures will lead to an increased evapotranspiration and also change in the form of precipitation from solid (snow, rime) to liquid (rain, drizzling). Such trends could further propel the unfavorable changes in the water balance budget.


2021 ◽  
Author(s):  
Albert Ossó ◽  
Richard P. Allan ◽  
Ed Hawkins ◽  
Len Shaffrey ◽  
Douglas Maraun

Abstract Human society and natural systems are intrinsically adapted to the local climate mean and variability. Therefore, changes relative to the local expected variability are highly relevant for assessing impact and planning for adaptation as the climate changes. We analyse the emerging climate signal relative to the diagnosed internal variability (signal-to-noise ratio, S/N) of a set of recently published climate indices over Europe. We calculate the signal-to-noise ratio with respect to a recent baseline (1951-1983) which relates to recent societal experience. In this framework, we find that during the 2000-2016 period, many areas of Europe already experienced significant changes in climate extremes, even when compared to this recent period which is within living memory. In particular, the S/N of extreme temperatures is larger than 1 and 2 over 34% and 4% of Europe, respectively. We also find that about 15% of Europe is experiencing more intense winter precipitation events, while in summer, 7% of Europe is experiencing stronger drought-inducing conditions.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Rafael Kühnel ◽  
Tjarda J. Roberts ◽  
Mats P. Björkman ◽  
Elisabeth Isaksson ◽  
Wenche Aas ◽  
...  

A 20-year dataset of weekly precipitation observations in Ny-Ålesund, Svalbard, was analysed to assess atmospheric wet deposition of nitrogen. Mean annual total nitrogen deposition was 74 mg N/(m2 yr) but exhibited large interannual variability and was dominated by highly episodic “strong” events, probably caused by rapid transport from European sources. The majority (90%) of precipitation samples were defined as “weak” (<2 mg N/m2) and contributed an annual baseline of ~17 mg N/(m2 yr), whereas 10% of precipitation samples were defined as “strong” (>2 mg N/m2) and additionally contributed up to 225 mg N/(m2 yr). Nitrate deposition largely occurred in samples within the solid-precipitation season (16 September–2 June), and ammonium deposition occurred equally in both solid and liquid seasons. Trends of reactive nitrogen emissions from Europe are uncertain, and increasing cyclonic activity over the North Atlantic caused by a changing climate might lead to more strong deposition events in Svalbard.


2011 ◽  
Vol 11 (15) ◽  
pp. 7657-7668 ◽  
Author(s):  
M. A. S. Lombard ◽  
J. G. Bryce ◽  
H. Mao ◽  
R. Talbot

Abstract. The atmospheric deposition of mercury (Hg) occurs via several mechanisms including wet, dry, and occult processes. In an effort to understand the atmospheric cycling and seasonal depositional characteristics of Hg, event-based wet deposition samples and reactive gaseous Hg (RGM) measurements were collected for approximately 3 years at Thompson Farm (TF), a near-coastal rural site in Durham, NH, part of the University of New Hampshire AIRMAP Observing Network. Total aqueous mercury exhibited seasonal patterns in Hg wet deposition at TF. The lowest Hg wet deposition was measured in the winter with an average total seasonal deposition of 1.56 μg m−2 compared to the summer average of 4.71 μg m−2. Inter-annual differences in total wet deposition are generally linked with precipitation volume, with the greatest deposition occurring in the wettest year. Relationships between surface level RGM and Hg wet deposition were also investigated based on continuous RGM measurements at TF from November 2006 to September 2009. No correlations were observed between RGM mixing ratios and Hg wet deposition, however the ineffective scavenging of RGM during winter precipitation events was evidenced by the less frequent depletion of RGM below the detection level. Seasonal dry deposition of reactive gaseous Hg (RGM) was estimated using an order-of-magnitude approach. RGM mixing ratios and dry deposition estimates were greatest during the winter and spring. The seasonal ratios of Hg wet deposition to RGM dry deposition vary by up to a factor of 80.


2018 ◽  
Author(s):  
Fumiko Nakagawa ◽  
Urumu Tsunogai ◽  
Yusuke Obata ◽  
Kenta Ando ◽  
Naoyuki Yamashita ◽  
...  

Abstract. To clarify the biological processing of nitrate within temperate forested catchments using unprocessed atmospheric nitrate exported from each catchment as a tracer, we continuously monitored stream nitrate concentrations and stable isotopic compositions including 17O-excess (Δ17O) in three forested catchments in Japan (KJ, IJ1, and IJ2) for more than two years. The catchments showed varying flux-weighted average nitrate concentrations: 58.4, 24.4, and 17.1 µmol L−1 in KJ, IJ1, and IJ2, respectively. In addition to stream nitrate, nitrate concentrations and stable isotopic compositions in soil water were determined for comparison in the most nitrate-enriched catchment (the KJ site). While 17O-excess of nitrate in soil water showed significant seasonal variation, ranging from +0.1 to +5.7 ‰, stream nitrate showed small variation, from +0.8 to +2.0‰ in KJ, +0.7 to +2.8 ‰ in IJ1, and +0.4 to +2.2‰ in IJ2. We concluded that the major source of stream nitrate in each forested catchment was nitrate in groundwater, which buffered the seasonal variations in soil water nitrate. The estimated annual export flux of unprocessed atmospheric nitrate accounted for 9.4 ± 2.6 %, 6.5 ± 1.8 %, and 2.6 ± 0.6 % of the annual deposition flux of atmospheric nitrate in KJ, IJ1, and IJ2, respectively. The export flux of unprocessed atmospheric nitrate relative to the deposition flux showed a clear normal correlation with the flux-weighted average concentration of stream nitrate, indicating that reductions in the biological assimilation rates of nitrate in forested soils, rather than increased nitrification rates, are likely responsible for the enrichment of stream nitrate, probably due to nitrogen saturation. The export flux of unprocessed atmospheric nitrate relative to the deposition flux in each forest ecosystem is applicable as an index for nitrogen saturation.


Sign in / Sign up

Export Citation Format

Share Document