scholarly journals A review of regionalisation for continuous streamflow simulation

2011 ◽  
Vol 15 (11) ◽  
pp. 3539-3553 ◽  
Author(s):  
Y. He ◽  
A. Bárdossy ◽  
E. Zehe

Abstract. Research on regionalisation in hydrology has been constantly advancing due to the need for prediction of streamflow in ungauged catchments. There are two types of studies that use regionalisation techniques for ungauged catchments. One type estimates parameters of streamflow statistics, flood quantiles in most cases. The other type estimates parameters of a rainfall-runoff model for simulating continuous streamflow or estimates continuous streamflow without using a model. Almost all methods applied to the latter can be applied to the former. This paper reviews all methods that are applied to continuous streamflow estimation for ungauged catchments. We divide them into two general categories: (1) distance-based and (2) regression-based. Methods that fall within each category are reviewed first and followed with a discussion on merits or problems associated with these various methods.

2007 ◽  
Vol 11 (2) ◽  
pp. 703-710 ◽  
Author(s):  
A. Bárdossy

Abstract. The parameters of hydrological models for catchments with few or no discharge records can be estimated using regional information. One can assume that catchments with similar characteristics show a similar hydrological behaviour and thus can be modeled using similar model parameters. Therefore a regionalisation of the hydrological model parameters on the basis of catchment characteristics is plausible. However, due to the non-uniqueness of the rainfall-runoff model parameters (equifinality), a workflow of regional parameter estimation by model calibration and a subsequent fit of a regional function is not appropriate. In this paper a different approach for the transfer of entire parameter sets from one catchment to another is discussed. Parameter sets are considered as tranferable if the corresponding model performance (defined as the Nash-Sutclife efficiency) on the donor catchment is good and the regional statistics: means and variances of annual discharges estimated from catchment properties and annual climate statistics for the recipient catchment are well reproduced by the model. The methodology is applied to a set of 16 catchments in the German part of the Rhine catchments. Results show that the parameters transfered according to the above criteria perform well on the target catchments.


2015 ◽  
Vol 12 (6) ◽  
pp. 5389-5426 ◽  
Author(s):  
S. Almeida ◽  
N. Le Vine ◽  
N. McIntyre ◽  
T. Wagener ◽  
W. Buytaert

Abstract. A recurrent problem in hydrology is the absence of streamflow data to calibrate rainfall-runoff models. A commonly used approach in such circumstances conditions model parameters on regionalized response signatures. While several different signatures are often available to be included in this process, an outstanding challenge is the selection of signatures that provide useful and complementary information. Different signatures do not necessarily provide independent information, and this has led to signatures being omitted or included on a subjective basis. This paper presents a method that accounts for the inter-signature error correlation structure so that regional information is neither neglected nor double-counted when multiple signatures are included. Using 84 catchments from the MOPEX database, observed signatures are regressed against physical and climatic catchment attributes. The derived relationships are then utilized to assess the joint probability distribution of the signature regionalization errors that is subsequently used in a Bayesian procedure to condition a rainfall-runoff model. The results show that the consideration of the inter-signature error structure may improve predictions when the error correlations are strong. However, other uncertainties such as model structure and observational error may outweigh the importance of these correlations. Further, these other uncertainties cause some signatures to appear repeatedly to be disinformative.


2016 ◽  
Vol 20 (2) ◽  
pp. 887-901 ◽  
Author(s):  
Susana Almeida ◽  
Nataliya Le Vine ◽  
Neil McIntyre ◽  
Thorsten Wagener ◽  
Wouter Buytaert

Abstract. A recurrent problem in hydrology is the absence of streamflow data to calibrate rainfall–runoff models. A commonly used approach in such circumstances conditions model parameters on regionalized response signatures. While several different signatures are often available to be included in this process, an outstanding challenge is the selection of signatures that provide useful and complementary information. Different signatures do not necessarily provide independent information and this has led to signatures being omitted or included on a subjective basis. This paper presents a method that accounts for the inter-signature error correlation structure so that regional information is neither neglected nor double-counted when multiple signatures are included. Using 84 catchments from the MOPEX database, observed signatures are regressed against physical and climatic catchment attributes. The derived relationships are then utilized to assess the joint probability distribution of the signature regionalization errors that is subsequently used in a Bayesian procedure to condition a rainfall–runoff model. The results show that the consideration of the inter-signature error structure may improve predictions when the error correlations are strong. However, other uncertainties such as model structure and observational error may outweigh the importance of these correlations. Further, these other uncertainties cause some signatures to appear repeatedly to be misinformative.


2008 ◽  
Vol 5 (1) ◽  
pp. 1-26 ◽  
Author(s):  
G. Moretti ◽  
A. Montanari

Abstract. The estimation of the peak river flow for ungauged river sections is a topical issue in applied hydrology. Spatially distributed rainfall-runoff models can be a useful tool to this end, since they are potentially able to simulate the river flow at any location of the watershed drainage network. However, it is not fully clear to what extent these models can provide reliable simulations over a wide range of spatial scales. This issue is investigated here by applying a spatially distributed, continuous simulation rainfall-runoff model to infer the flood frequency distribution of the Riarbero Torrent. This is an ungauged mountain creek located in northern Italy, whose drainage area is 17 km2. The results were checked by using estimates of the peak river flow obtained by applying a classical procedure based on hydrological similarity principles. The analysis highlights interesting perspectives for the application of spatially distributed models to ungauged catchments.


Sign in / Sign up

Export Citation Format

Share Document