scholarly journals Inferring the flood frequency distribution for an ungauged basin using a spatially distributed rainfall-runoff model

2008 ◽  
Vol 5 (1) ◽  
pp. 1-26 ◽  
Author(s):  
G. Moretti ◽  
A. Montanari

Abstract. The estimation of the peak river flow for ungauged river sections is a topical issue in applied hydrology. Spatially distributed rainfall-runoff models can be a useful tool to this end, since they are potentially able to simulate the river flow at any location of the watershed drainage network. However, it is not fully clear to what extent these models can provide reliable simulations over a wide range of spatial scales. This issue is investigated here by applying a spatially distributed, continuous simulation rainfall-runoff model to infer the flood frequency distribution of the Riarbero Torrent. This is an ungauged mountain creek located in northern Italy, whose drainage area is 17 km2. The results were checked by using estimates of the peak river flow obtained by applying a classical procedure based on hydrological similarity principles. The analysis highlights interesting perspectives for the application of spatially distributed models to ungauged catchments.

2008 ◽  
Vol 12 (4) ◽  
pp. 1141-1152 ◽  
Author(s):  
G. Moretti ◽  
A. Montanari

Abstract. The estimation of the peak river flow for ungauged river sections is a topical issue in applied hydrology. Spatially distributed rainfall-runoff models can be a useful tool to this end, since they are potentially able to simulate the river flow at any location of the watershed drainage network. However, it is not fully clear to what extent these models can provide reliable simulations over a wide range of spatial scales. This issue is investigated here by applying a spatially distributed, continuous simulation rainfall-runoff model to infer the flood frequency distribution of the Riarbero River. This is an ungauged mountain creek located in northern Italy, whose drainage area is 17 km2. The hydrological model is first calibrated by using a 1-year record of hourly meteorological data and river flows observed at the outlet of the 1294 km2 wide Secchia River basin, of which the Riarbero is a tributary. The model is then validated by performing a 100-year long simulation of synthetic river flow data, which allowed us to compare the simulated and observed flood frequency distributions at the Secchia River outlet and the internal cross river section of Cavola Bridge, where the basin area is 337 km2. Finally, another simulation of hourly river flows was performed by referring to the outlet of the Riarbero River, therefore allowing us to estimate the related flood frequency distribution. The results were validated by using estimates of peak river flow obtained by applying hydrological similarity principles and a regional method. The results show that the flood flow estimated through the application of the distributed model is consistent with the estimate provided by the regional procedure as well as the behaviors of the river banks. Conversely, the method based on hydrological similarity delivers an estimate that seems to be not as reliable. The analysis highlights interesting perspectives for the application of spatially distributed models to ungauged catchments.


2007 ◽  
Vol 11 (1) ◽  
pp. 516-531 ◽  
Author(s):  
S. M. Crooks ◽  
P. S. Naden

Abstract. This paper describes the development of a semi-distributed conceptual rainfall–runoff model, originally formulated to simulate impacts of climate and land-use change on flood frequency. The model has component modules for soil moisture balance, drainage response and channel routing and is grid-based to allow direct incorporation of GIS- and Digital Terrain Model (DTM)-derived data sets into the initialisation of parameter values. Catchment runoff is derived from the aggregation of components of flow from the drainage module within each grid square and from total routed flow from all grid squares. Calibration is performed sequentially for the three modules using different objective functions for each stage. A key principle of the modelling system is the concept of nested calibration, which ensures that all flows simulated for points within a large catchment are spatially consistent. The modelling system is robust and has been applied successfully at different spatial scales to three large catchments in the UK, including comparison of observed and modelled flood frequency and flow duration curves, simulation of flows for uncalibrated catchments and identification of components of flow within a modelled hydrograph. The role of such a model in integrated catchment studies is outlined.


2007 ◽  
Vol 11 (2) ◽  
pp. 703-710 ◽  
Author(s):  
A. Bárdossy

Abstract. The parameters of hydrological models for catchments with few or no discharge records can be estimated using regional information. One can assume that catchments with similar characteristics show a similar hydrological behaviour and thus can be modeled using similar model parameters. Therefore a regionalisation of the hydrological model parameters on the basis of catchment characteristics is plausible. However, due to the non-uniqueness of the rainfall-runoff model parameters (equifinality), a workflow of regional parameter estimation by model calibration and a subsequent fit of a regional function is not appropriate. In this paper a different approach for the transfer of entire parameter sets from one catchment to another is discussed. Parameter sets are considered as tranferable if the corresponding model performance (defined as the Nash-Sutclife efficiency) on the donor catchment is good and the regional statistics: means and variances of annual discharges estimated from catchment properties and annual climate statistics for the recipient catchment are well reproduced by the model. The methodology is applied to a set of 16 catchments in the German part of the Rhine catchments. Results show that the parameters transfered according to the above criteria perform well on the target catchments.


2015 ◽  
Vol 12 (6) ◽  
pp. 5389-5426 ◽  
Author(s):  
S. Almeida ◽  
N. Le Vine ◽  
N. McIntyre ◽  
T. Wagener ◽  
W. Buytaert

Abstract. A recurrent problem in hydrology is the absence of streamflow data to calibrate rainfall-runoff models. A commonly used approach in such circumstances conditions model parameters on regionalized response signatures. While several different signatures are often available to be included in this process, an outstanding challenge is the selection of signatures that provide useful and complementary information. Different signatures do not necessarily provide independent information, and this has led to signatures being omitted or included on a subjective basis. This paper presents a method that accounts for the inter-signature error correlation structure so that regional information is neither neglected nor double-counted when multiple signatures are included. Using 84 catchments from the MOPEX database, observed signatures are regressed against physical and climatic catchment attributes. The derived relationships are then utilized to assess the joint probability distribution of the signature regionalization errors that is subsequently used in a Bayesian procedure to condition a rainfall-runoff model. The results show that the consideration of the inter-signature error structure may improve predictions when the error correlations are strong. However, other uncertainties such as model structure and observational error may outweigh the importance of these correlations. Further, these other uncertainties cause some signatures to appear repeatedly to be disinformative.


2016 ◽  
Vol 20 (2) ◽  
pp. 887-901 ◽  
Author(s):  
Susana Almeida ◽  
Nataliya Le Vine ◽  
Neil McIntyre ◽  
Thorsten Wagener ◽  
Wouter Buytaert

Abstract. A recurrent problem in hydrology is the absence of streamflow data to calibrate rainfall–runoff models. A commonly used approach in such circumstances conditions model parameters on regionalized response signatures. While several different signatures are often available to be included in this process, an outstanding challenge is the selection of signatures that provide useful and complementary information. Different signatures do not necessarily provide independent information and this has led to signatures being omitted or included on a subjective basis. This paper presents a method that accounts for the inter-signature error correlation structure so that regional information is neither neglected nor double-counted when multiple signatures are included. Using 84 catchments from the MOPEX database, observed signatures are regressed against physical and climatic catchment attributes. The derived relationships are then utilized to assess the joint probability distribution of the signature regionalization errors that is subsequently used in a Bayesian procedure to condition a rainfall–runoff model. The results show that the consideration of the inter-signature error structure may improve predictions when the error correlations are strong. However, other uncertainties such as model structure and observational error may outweigh the importance of these correlations. Further, these other uncertainties cause some signatures to appear repeatedly to be misinformative.


2018 ◽  
Vol 13 (2) ◽  
pp. 115-130 ◽  
Author(s):  
Radhika Radhika ◽  
Rendy Firmansyah ◽  
Waluyo Hatmoko

Information on water availability is vital in water resources management. Unfortunately, information on the condition of hydrological data, either river flow data, or rainfall data is very limited temporally and spatially. With the availability of satellite technology, rainfall in the tropics can be monitored and recorded for further analysis. This paper discusses the calculation of surface water availability based on rainfall data from TRMM satellite, and then Wflow, a distributed rainfall-runoff model generates monthly time runoff data from 2003 to 2015 for all river basin areas in Indonesia. It is concluded that the average surface water availability in Indonesia is 88.3 thousand m3/s or equivalent to 2.78 trillion m3/ year. This figure is lower than the study of Water Resources Research Center 2010 based on discharge at the post estimated water that produces 3.9 trillion m3/year, but very close to the study of Aquastat FAO of 2.79 trillion m3 / year. The main benefit of this satellite-based calculation is that at any location in Indonesia, potential surface water can be obtained by multiplying the area of the catchment and the runoff height.


2010 ◽  
pp. n/a-n/a ◽  
Author(s):  
Hilary McMillan ◽  
Jim Freer ◽  
Florian Pappenberger ◽  
Tobias Krueger ◽  
Martyn Clark

Sign in / Sign up

Export Citation Format

Share Document