scholarly journals Improving the rainfall rate estimation in the midstream of the Heihe River Basin using raindrop size distribution

2011 ◽  
Vol 15 (3) ◽  
pp. 943-951 ◽  
Author(s):  
G. Zhao ◽  
R. Chu ◽  
T. Zhang ◽  
J. Li ◽  
J. Shen ◽  
...  

Abstract. During the intensive observation period of the Watershed Allied Telemetry Experimental Research (WATER), a total of 1074 raindrop size distribution were measured by the Parsivel disdrometer, the latest state-of-the-art optical laser instrument. Because of the limited observation data in Qinghai-Tibet Plateau, the modelling behaviour was not well done. We used raindrop size distributions to improve the rain rate estimator of meteorological radar in order to obtain many accurate rain rate data in this area. We got the relationship between the terminal velocity of the raindrop and the diameter (mm) of a raindrop: v(D) = 4.67D0.53. Then four types of estimators for X-band polarimetric radar are examined. The simulation results show that the classical estimator R (ZH) is most sensitive to variations in DSD and the estimator R (KDP, ZH, ZDR) is the best estimator for estimating the rain rate. An X-band polarimetric radar (714XDP) is used for verifying these estimators. The lowest sensitivity of the rain rate estimator R (KDP, ZH, ZDR) to variations in DSD can be explained by the following facts. The difference in the forward-scattering amplitudes at horizontal and vertical polarizations, which contributes KDP, is proportional to the 3rd power of the drop diameter. On the other hand, the exponent of the backscatter cross-section, which contributes to ZH, is proportional to the 6th power of the drop diameter. Because the rain rate R is proportional to the 3.57th power of the drop diameter, KDP is less sensitive to DSD variations than ZH.

2009 ◽  
Vol 6 (5) ◽  
pp. 6107-6134 ◽  
Author(s):  
G. Zhao ◽  
R. Chu ◽  
X. Li ◽  
T. Zhang ◽  
J. Shen ◽  
...  

Abstract. During the intensive observation period of the Watershed Allied Telemetry Experimental Research (WATER), a total of 1074 raindrop size distribution were measured by the Parsivel disdrometer, a latest state of the art optical laser instrument. Because of the limited observation data in Qinghai-Tibet Plateau, the modeling behavior was not well-done. We used raindrop size distributions to improve the rain rate estimator of meteorological radar, in order to obtain many accurate rain rate data in this area. We got the relationship between the terminal velocity of the rain drop and the diameter (mm) of a rain drop: v(D)=4.67 D0.53. Then four types of estimators for X-band polarimetric radar are examined. The simulation results show that the classical estimator R(Z) is most sensitive to variations in DSD and the estimator R (KDP, Z, ZDR) is the best estimator for estimating the rain rate. The lowest sensitivity of the rain rate estimator R (KDP, Z, ZDP) to variations in DSD can be explained by the following facts. The difference in the forward-scattering amplitudes at horizontal and vertical polarizations, which contributes KDP, is proportional to the 3rd power of the drop diameter. On the other hand, the exponent of the backscatter cross section, which contributes to Z, is proportional to the 6th power of the drop diameter. Because the rain rate R is proportional to the 3.57th power of the drop diameter, KDP is less sensitive to DSD variations than Z.


2016 ◽  
Author(s):  
Timothy H. Raupach ◽  
Alexis Berne

Abstract. A new technique for estimating the raindrop size distribution (DSD) from polarimetric radar data is proposed. Two statistical moments of the DSD are estimated from polarimetric variables, and the DSD is reconstructed. The technique takes advantage of the relative invariance of the double-moment normalised DSD. The method was tested using X-band radar data and networks of disdrometers in three different climatic regions. Radar-derived estimates of the DSD compare reasonably well to observations. In the three tested domains, the proposed method performs similarly to and often better than a state-of-the-art DSD-retrieval technique. The approach is flexible because no specific double-normalised DSD model is prescribed. In addition, a method is proposed to treat noisy radar data to improve DSD-retrieval performance with radar measurements.


2012 ◽  
Vol 51 (11) ◽  
pp. 1960-1970 ◽  
Author(s):  
Ricardo Sarmento Tenório ◽  
Marcia Cristina da Silva Moraes ◽  
Henri Sauvageot

AbstractA dataset on raindrop size distribution (DSD) gathered in a coastal site of the Alagoas state in northeastern Brazil is used to analyze some differences between continental and maritime rainfall parameters. The dataset is divided into two subsets. One is composed of rainfall systems coming from the continent and moving eastward (i.e., offshore), representing the continental subset. The other is composed of rainfall systems that developed over the sea and are moving westward (i.e., inshore), representing the maritime subset. The mean conditional rain rate (i.e., for rain rate R > 0) is found to be higher for maritime (4.6 mm h−1) than for continental (3.2 mm h−1) conditions. The coefficient of variation of the conditional rain rate is lower for the maritime (1.75) than for the continental (2.25) subset. The continental and maritime DSDs display significant differences. For drop diameter D smaller than about 2 mm, the number of drops is higher for maritime rain than for continental rain. This reverses for D > 2 mm, in such a way that radar reflectivity factor Z for the maritime case is lower than for the continental case at the same rain rate. These results show that, to estimate precipitation by radar in the coastal area of northeastern Brazil, coefficients of the Z–R relation need to be adapted to the direction of motion of the rain-bearing system, inshore or offshore.


2019 ◽  
Vol 58 (1) ◽  
pp. 145-164 ◽  
Author(s):  
Timothy H. Raupach ◽  
Merhala Thurai ◽  
V. N. Bringi ◽  
Alexis Berne

AbstractCommonly used disdrometers tend not to accurately measure concentrations of very small drops in the raindrop size distribution (DSD), either through truncation of the DSD at the small-drop end or because of large uncertainties on these measurements. Recent studies have shown that, as a result of these inaccuracies, many if not most ground-based disdrometers do not capture the “drizzle mode” of precipitation, which consists of large concentrations of small drops and is often separated from the main part of the DSD by a shoulder region. We present a technique for reconstructing the drizzle mode of the DSD from “incomplete” measurements in which the drizzle mode is not present. Two statistical moments of the DSD that are well measured by standard disdrometers are identified and used with a double-moment normalized DSD function that describes the DSD shape. A model representing the double-moment normalized DSD is trained using measurements of DSD spectra that contain the drizzle mode obtained using collocated Meteorological Particle Spectrometer and 2D video disdrometer instruments. The best-fitting model is shown to depend on temporal resolution. The result is a method to estimate, from truncated or uncertain measurements of the DSD, a more complete DSD that includes the drizzle mode. The technique reduces bias on low-order moments of the DSD that influence important bulk variables such as the total drop concentration and mass-weighted mean drop diameter. The reconstruction is flexible and often produces better rain-rate estimations than a previous DSD correction routine, particularly for light rain.


2020 ◽  
Vol 59 (3) ◽  
pp. 517-533 ◽  
Author(s):  
Ali Tokay ◽  
Leo Pio D’Adderio ◽  
David A. Marks ◽  
Jason L. Pippitt ◽  
David B. Wolff ◽  
...  

AbstractThe ground-based-radar-derived raindrop size distribution (DSD) parameters—mass-weighted drop diameter Dmass and normalized intercept parameter NW—are the sole resource for direct validation of the National Aeronautics and Space Administration (NASA) Global Precipitation Measurement (GPM) mission Core Observatory satellite-based retrieved DSD. Both Dmass and NW are obtained from radar-measured reflectivity ZH and differential reflectivity ZDR through empirical relationships. This study uses existing relationships that were determined for the GPM ground validation (GV) program and directly compares the NASA S-band polarimetric radar (NPOL) observables of ZH and ZDR and derived Dmass and NW with those calculated by two-dimensional video disdrometer (2DVD). The joint NPOL and 2DVD datasets were acquired during three GPM GV field campaigns conducted in eastern Iowa, southern Appalachia, and western Washington State. The comparative study quantifies the level of agreement for ZH, ZDR, Dmass, and log(NW) at an optimum distance (15–40 km) from the radar as well as at distances greater than 60 km from radar and over mountainous terrain. Interestingly, roughly 10%–15% of the NPOL ZH–ZDR pairs were well outside the envelope of 2DVD-estimated ZH–ZDR pairs. The exclusion of these pairs improved the comparisons noticeably.


2017 ◽  
Vol 10 (7) ◽  
pp. 2573-2594 ◽  
Author(s):  
Timothy H. Raupach ◽  
Alexis Berne

Abstract. A new technique for estimating the raindrop size distribution (DSD) from polarimetric radar data is proposed. Two statistical moments of the DSD are estimated from polarimetric variables, and the DSD is reconstructed using a double-moment normalisation. The technique takes advantage of the relative invariance of the double-moment normalised DSD. The method was tested using X-band radar data and networks of disdrometers in three different climatic regions. Radar-derived estimates of the DSD compare reasonably well to observations. In the three tested domains, in terms of DSD moments, rain rate, and characteristic drop diameter, the proposed method performs similarly to and often better than a state-of-the-art DSD-retrieval technique. The approach is flexible because no specific DSD model is prescribed. In addition, a method is proposed to treat noisy radar data to improve DSD-retrieval performance with radar measurements.


Water ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2265 ◽  
Author(s):  
Ma ◽  
Zhao ◽  
Yang ◽  
Xiao ◽  
Zhang ◽  
...  

Raindrop size distribution (DSD) can reflect the fundamental microphysics of precipitation and provide an accurate estimation of its amount and characteristics; however, there are few observations and investigations of DSD in cold, mountainous regions. We used the second-generation particle size and velocity disdrometer Parsivel2 to establish a quality control scheme for raindrop spectral data obtained for the Qinghai–Tibet Plateau in 2015. This scheme included the elimination of particles in the lowest two size classes, particles >10 mm in diameter and rain rates <0.01 mm∙h−1. We analyzed the DSD characteristics for different types of precipitation and rain rates in both permafrost regions and regions with seasonally frozen ground. The precipitation in the permafrost regions during the summer were mainly solid with a large particle size and slow fall velocity, whereas the precipitation in the regions with seasonally frozen ground were mainly liquid. The DSD of snow had a broader drop spectrum, the largest particle size, the slowest fall velocity, and the largest number of particles, followed by hail. Rain and sleet shared similar DSD characteristics, with a smaller particle size, slower velocity, and smaller number of particles. The particle concentration for different classes of rain rate decreased with an increase in particle size and decreased gradually with an increase in rain rate. Precipitation with a rain rate >2 mm∙h−1 was the main contributor to the annual precipitation. The dewpoint thresholds for snow and rain in permafrost regions were 0 and 1.5 °C, respectively. The dewpoint range 0–1.5 °C was characterized by mixed precipitation with a large proportion of hail. This study provides valuable DSD information on the Qinghai–Tibet Plateau and can be used as an important reference for the quality control of raindrop spectral data in regions dominated by solid precipitation.


Sign in / Sign up

Export Citation Format

Share Document