scholarly journals The influence of conceptual model structure on model performance: a comparative study for 237 French catchments

2013 ◽  
Vol 17 (10) ◽  
pp. 4227-4239 ◽  
Author(s):  
W. R. van Esse ◽  
C. Perrin ◽  
M. J. Booij ◽  
D. C. M. Augustijn ◽  
F. Fenicia ◽  
...  

Abstract. Models with a fixed structure are widely used in hydrological studies and operational applications. For various reasons, these models do not always perform well. As an alternative, flexible modelling approaches allow the identification and refinement of the model structure as part of the modelling process. In this study, twelve different conceptual model structures from the SUPERFLEX framework are compared with the fixed model structure GR4H, using a large set of 237 French catchments and discharge-based performance metrics. The results show that, in general, the flexible approach performs better than the fixed approach. However, the flexible approach has a higher chance of inconsistent results when calibrated on two different periods. When analysing the subset of 116 catchments where the two approaches produce consistent performance over multiple time periods, their average performance relative to each other is almost equivalent. From the point of view of developing a well-performing fixed model structure, the findings favour models with parallel reservoirs and a power function to describe the reservoir outflow. In general, conceptual hydrological models perform better on larger and/or wetter catchments than on smaller and/or drier catchments. The model structures performed poorly when there were large climatic differences between the calibration and validation periods, in catchments with flashy flows, and in catchments with unexplained variations in low flow measurements.

2013 ◽  
Vol 10 (4) ◽  
pp. 5457-5490 ◽  
Author(s):  
W. R. van Esse ◽  
C. Perrin ◽  
M. J. Booij ◽  
D. C. M. Augustijn ◽  
F. Fenicia ◽  
...  

Abstract. In hydrological studies models with a fixed structure are commonly used. For various reasons, these models do not always perform well. As an alternative, a flexible modelling approach could be followed, where the identification of the model structure is part of the model set-up procedure. In this study, the performance of twelve different conceptual model structures from the SUPERFLEX framework with varying complexity and the fixed model structure of GR4H were compared on a large set of 237 French catchments. The results showed that in general the flexible approach performs better than the fixed approach. However, the flexible approach has a higher chance of inconsistent results when implemented on two different periods. The same holds for more complex model structures. When for practical reasons a fixed model structure is preferred, this study shows that models with parallel reservoirs and a power function to describe the reservoir outflow perform best. In general, conceptual hydrological models perform better on large or wet catchments than on small or dry catchments. The model structures performed poorly when there was a climatic difference between the calibration and validation period, for catchments with flashy flows or disturbances in low flow measurements.


2021 ◽  
Vol 21 (3) ◽  
pp. 961-976
Author(s):  
Gijs van Kempen ◽  
Karin van der Wiel ◽  
Lieke Anna Melsen

Abstract. Hydrological extremes affect societies and ecosystems around the world in many ways, stressing the need to make reliable predictions using hydrological models. However, several different hydrological models can be selected to simulate extreme events. A difference in hydrological model structure results in a spread in the simulation of extreme runoff events. We investigated the impact of different model structures on the magnitude and timing of simulated extreme high- and low-flow events by combining two state-of-the-art approaches: a modular modelling framework (FUSE) and large ensemble meteorological simulations. This combination of methods created the opportunity to isolate the impact of specific hydrological process formulations at long return periods without relying on statistical models. We showed that the impact of hydrological model structure was larger for the simulation of low-flow compared to high-flow events and varied between the four evaluated climate zones. In cold and temperate climate zones, the magnitude and timing of extreme runoff events were significantly affected by different parameter sets and hydrological process formulations, such as evaporation. In the arid and tropical climate zones, the impact of hydrological model structures on extreme runoff events was smaller. This novel combination of approaches provided insights into the importance of specific hydrological process formulations in different climate zones, which can support adequate model selection for the simulation of extreme runoff events.


2020 ◽  
Author(s):  
Gijs van Kempen ◽  
Karin van der Wiel ◽  
Lieke Anna Melsen

Abstract. Hydrological extremes affect societies and ecosystems around the world in many ways, stressing the need to make reliable predictions using hydrological models. However, several hydrological models can be selected to simulate extreme events. A difference in hydrological model structure results in a spread in the simulation of extreme runoff events. We investigated the impact of different model structures on the magnitude and timing of simulated extreme high- and low-flow events, by combining two state-of-the-art approaches; a modular modelling framework (FUSE) and large ensemble meteorological simulations. This combination of methods created the opportunity to isolate the impact of specific hydrological process formulations at long return periods without relying on statistical models. We showed that the impact of hydrological model structure was larger for the simulation of low-flow compared to high-flow events and varied between the four evaluated climate zones. In cold and temperate climate zones, the magnitude and timing of extreme runoff events were significantly affected by different parameter sets and hydrological process formulations, such as evaporation. The impact of hydrological model structures on extreme runoff events was smaller in the arid and tropical climate zones. This novel combination of approaches provided insights into the importance of specific hydrological processes formulations in different climate zones, which can support adequate model selection for the simulation of extreme runoff events.


2011 ◽  
Vol 8 (4) ◽  
pp. 6833-6866 ◽  
Author(s):  
M. Staudinger ◽  
K. Stahl ◽  
J. Seibert ◽  
M. P. Clark ◽  
L. M. Tallaksen

Abstract. Low flows are often poorly reproduced by commonly used hydrological models, which are traditionally designed to meet peak flow situations. Hence, there is a need to improve hydrological models for low flow prediction. This study assessed the impact of model structure on low flow simulations and recession behaviour using the Framework for Understanding Structural Errors (FUSE). FUSE identifies the set of subjective decisions made when building a hydrological model, and provides multiple options for each modeling decision. Altogether 79 models were created and applied to simulate stream flows in the snow dominated headwater catchment Narsjø in Norway (119 km2). All models were calibrated using an automatic optimisation method. The results showed that simulations of summer low flows were poorer than simulations of winter low flows, reflecting the importance of different hydrological processes. The model structure influencing winter low flow simulations is the lower layer architecture, whereas various model structures were identified to influence model performance during summer.


2011 ◽  
Vol 15 (11) ◽  
pp. 3447-3459 ◽  
Author(s):  
M. Staudinger ◽  
K. Stahl ◽  
J. Seibert ◽  
M. P. Clark ◽  
L. M. Tallaksen

Abstract. Low flows are often poorly reproduced by commonly used hydrological models, which are traditionally designed to meet peak flow situations. Hence, there is a need to improve hydrological models for low flow prediction. This study assessed the impact of model structure on low flow simulations and recession behaviour using the Framework for Understanding Structural Errors (FUSE). FUSE identifies the set of subjective decisions made when building a hydrological model and provides multiple options for each modeling decision. Altogether 79 models were created and applied to simulate stream flows in the snow dominated headwater catchment Narsjø in Norway (119 km2). All models were calibrated using an automatic optimisation method. The results showed that simulations of summer low flows were poorer than simulations of winter low flows, reflecting the importance of different hydrological processes. The model structure influencing winter low flow simulations is the lower layer architecture, whereas various model structures were identified to influence model performance during summer.


1999 ◽  
Vol 39 (4) ◽  
pp. 55-60 ◽  
Author(s):  
J. Alex ◽  
R. Tschepetzki ◽  
U. Jumar ◽  
F. Obenaus ◽  
K.-H. Rosenwinkel

Activated sludge models are widely used for planning and optimisation of wastewater treatment plants and on line applications are under development to support the operation of complex treatment plants. A proper model is crucial for all of these applications. The task of parameter calibration is focused in several papers and applications. An essential precondition for this task is an appropriately defined model structure, which is often given much less attention. Different model structures for a large scale treatment plant with circulation flow are discussed in this paper. A more systematic method to derive a suitable model structure is applied to this case. Results of a numerical hydraulic model are used for this purpose. The importance of these efforts are proven by a high sensitivity of the simulation results with respect to the selection of the model structure and the hydraulic conditions. Finally it is shown, that model calibration was possible only by adjusting to the hydraulic behaviour and without any changes of biological parameters.


Author(s):  
Aimin Xu

Let [Formula: see text] be either the category of [Formula: see text]-modules or the category of chain complexes of [Formula: see text]-modules and [Formula: see text] a cofibrantly generated hereditary abelian model structure on [Formula: see text]. First, we get a new cofibrantly generated model structure on [Formula: see text] related to [Formula: see text] for any positive integer [Formula: see text], and hence, one can get new algebraic triangulated categories. Second, it is shown that any [Formula: see text]-strongly Gorenstein projective module gives rise to a projective cotorsion pair cogenerated by a set. Finally, let [Formula: see text] be an [Formula: see text]-module with finite flat dimension and [Formula: see text] a positive integer, if [Formula: see text] is an exact sequence of [Formula: see text]-modules with every [Formula: see text] Gorenstein injective, then [Formula: see text] is injective.


2017 ◽  
Vol 21 (6) ◽  
pp. 2923-2951 ◽  
Author(s):  
Laurie Caillouet ◽  
Jean-Philippe Vidal ◽  
Eric Sauquet ◽  
Alexandre Devers ◽  
Benjamin Graff

Abstract. The length of streamflow observations is generally limited to the last 50 years even in data-rich countries like France. It therefore offers too small a sample of extreme low-flow events to properly explore the long-term evolution of their characteristics and associated impacts. To overcome this limit, this work first presents a daily 140-year ensemble reconstructed streamflow dataset for a reference network of near-natural catchments in France. This dataset, called SCOPE Hydro (Spatially COherent Probabilistic Extended Hydrological dataset), is based on (1) a probabilistic precipitation, temperature, and reference evapotranspiration downscaling of the Twentieth Century Reanalysis over France, called SCOPE Climate, and (2) continuous hydrological modelling using SCOPE Climate as forcings over the whole period. This work then introduces tools for defining spatio-temporal extreme low-flow events. Extreme low-flow events are first locally defined through the sequent peak algorithm using a novel combination of a fixed threshold and a daily variable threshold. A dedicated spatial matching procedure is then established to identify spatio-temporal events across France. This procedure is furthermore adapted to the SCOPE Hydro 25-member ensemble to characterize in a probabilistic way unrecorded historical events at the national scale. Extreme low-flow events are described and compared in a spatially and temporally homogeneous way over 140 years on a large set of catchments. Results highlight well-known recent events like 1976 or 1989–1990, but also older and relatively forgotten ones like the 1878 and 1893 events. These results contribute to improving our knowledge of historical events and provide a selection of benchmark events for climate change adaptation purposes. Moreover, this study allows for further detailed analyses of the effect of climate variability and anthropogenic climate change on low-flow hydrology at the scale of France.


2007 ◽  
Vol 4 (1) ◽  
pp. 91-123 ◽  
Author(s):  
F. Fenicia ◽  
D. P. Solomatine ◽  
H. H. G. Savenije ◽  
P. Matgen

Abstract. Conceptual hydrologic models are useful tools as they provide an interpretable representation of the hydrologic behaviour of a catchment. Their representation of catchment's hydrological processes and physical characteristics, however, implies simplification of the complexity and heterogeneity of reality. As a result, those models often show a lack of flexibility in reproducing the vast spectrum of catchment responses. Hence, the accuracy in reproducing certain aspects of the system behaviour is often paid in terms of a lack of accuracy in the representation of other aspects. By acknowledging the structural limitations of those models, a modular approach to hydrological simulation is proposed. Instead of using a single model to reproduce the full range of catchment responses, multiple models are used, each of them assigned to a specific task. The approach is here demonstrated in the case where the different models are associated with different parameter realizations within a fixed model structure. We show that using a composite "global" model, obtained by a combination of individual "local" models, the accuracy of the simulation is improved. We argue that this approach can be useful because it partially overcomes the structural limitations that a conceptual model might exhibit. The approach is shown in application to the discharge simulation of the experimental Alzette River basin in Luxembourg, with a conceptual model that follows the structure of the HBV model.


Sign in / Sign up

Export Citation Format

Share Document