scholarly journals Propagation of hydro-meteorological uncertainty in a model cascade framework to inundation prediction

2015 ◽  
Vol 19 (7) ◽  
pp. 2981-2998 ◽  
Author(s):  
J. P. Rodríguez-Rincón ◽  
A. Pedrozo-Acuña ◽  
J. A. Breña-Naranjo

Abstract. This investigation aims to study the propagation of meteorological uncertainty within a cascade modelling approach to flood prediction. The methodology was comprised of a numerical weather prediction (NWP) model, a distributed rainfall–runoff model and a 2-D hydrodynamic model. The uncertainty evaluation was carried out at the meteorological and hydrological levels of the model chain, which enabled the investigation of how errors that originated in the rainfall prediction interact at a catchment level and propagate to an estimated inundation area and depth. For this, a hindcast scenario is utilised removing non-behavioural ensemble members at each stage, based on the fit with observed data. At the hydrodynamic level, an uncertainty assessment was not incorporated; instead, the model was setup following guidelines for the best possible representation of the case study. The selected extreme event corresponds to a flood that took place in the southeast of Mexico during November 2009, for which field data (e.g. rain gauges; discharge) and satellite imagery were available. Uncertainty in the meteorological model was estimated by means of a multi-physics ensemble technique, which is designed to represent errors from our limited knowledge of the processes generating precipitation. In the hydrological model, a multi-response validation was implemented through the definition of six sets of plausible parameters from past flood events. Precipitation fields from the meteorological model were employed as input in a distributed hydrological model, and resulting flood hydrographs were used as forcing conditions in the 2-D hydrodynamic model. The evolution of skill within the model cascade shows a complex aggregation of errors between models, suggesting that in valley-filling events hydro-meteorological uncertainty has a larger effect on inundation depths than that observed in estimated flood inundation extents.

2019 ◽  
Vol 23 (9) ◽  
pp. 3823-3841 ◽  
Author(s):  
Maria Laura Poletti ◽  
Francesco Silvestro ◽  
Silvio Davolio ◽  
Flavio Pignone ◽  
Nicola Rebora

Abstract. Forecasting flash floods some hours in advance is still a challenge, especially in environments made up of many small catchments. Hydrometeorological forecasting systems generally allow for predicting the possibility of having very intense rainfall events on quite large areas with good performances, even with 12–24 h of anticipation. However, they are not able to predict the exact rainfall location if we consider portions of a territory of 10 to 1000 km2 as the order of magnitude. The scope of this work is to exploit both observations and modelling sources to improve the discharge prediction in small catchments with a lead time of 2–8 h. The models used to achieve the goal are essentially (i) a probabilistic rainfall nowcasting model able to extrapolate the rainfall evolution from observations, (ii) a non-hydrostatic high-resolution numerical weather prediction (NWP) model and (iii) a distributed hydrological model able to provide a streamflow prediction in each pixel of the studied domain. These tools are used, together with radar observations, in a synergistic way, exploiting the information of each element in order to complement each other. For this purpose observations are used in a frequently updated data assimilation framework to drive the NWP system, whose output is in turn used to improve the information as input to the nowcasting technique in terms of a predicted rainfall volume trend; finally nowcasting and NWP outputs are blended, generating an ensemble of rainfall scenarios used to feed the hydrological model and produce a prediction in terms of streamflow. The flood prediction system is applied to three major events that occurred in the Liguria region (Italy) first to produce a standard analysis on predefined basin control sections and then using a distributed approach that exploits the capabilities of the employed hydrological model. The results obtained for these three analysed events show that the use of the present approach is promising. Even if not in all the cases, the blending technique clearly enhances the prediction capacity of the hydrological nowcasting chain with respect to the use of input coming only from the nowcasting technique; moreover, a worsening of the performance is observed less, and it is nevertheless ascribable to the critical transition between the nowcasting and the NWP model rainfall field.


2014 ◽  
Vol 11 (7) ◽  
pp. 7977-8011 ◽  
Author(s):  
J. P. Rodríguez-Rincón ◽  
A. Pedrozo-Acuña ◽  
J. A. Breña Naranjo

Abstract. The purpose of this investigation is to study the propagation of meteorological uncertainty within a cascade modelling approach to flood mapping. The methodology is comprised of a Numerical Weather Prediction Model (NWP), a distributed rainfall–runoff model and a standard 2-D hydrodynamic model. The cascade of models is used to reproduce an extreme flood event that took place in the Southeast of Mexico, during November 2009. The event is selected as high quality field data (e.g. rain gauges; discharge) and satellite imagery are available. Uncertainty in the meteorological model (Weather Research and Forecasting model) is evaluated through the use of a multi-physics ensemble technique, which considers twelve parameterization schemes to determine a given precipitation. The resulting precipitation fields are used as input in a distributed hydrological model, enabling the determination of different hydrographs associated to this event. Lastly, by means of a standard 2-D hydrodynamic model, hydrographs are used as forcing conditions to study the propagation of the meteorological uncertainty to an estimated flooded area. Results show the utility of the selected modelling approach to investigate error propagation within a cascade of models. Moreover, the error associated to the determination of the runoff, is showed to be lower than that obtained in the precipitation estimation suggesting that uncertainty do not necessarily increase within a model cascade.


2019 ◽  
Author(s):  
Maria Laura Poletti ◽  
Francesco Silvestro ◽  
Silvio Davolio ◽  
Flavio Pignone ◽  
Nicola Rebora

Abstract. Forecasting flash floods with anticipation of some hours is still a challenge especially in environments made by a collection of small catchments. Hydrometeorological forecasting systems generally allow to predict the possibility of having very intense rainfall events on quite large areas with good performances even with 12–24 hours of anticipation. However, they are not able to predict exactly rainfall location if we consider portions of territory of 10 to 103 km2 as order of magnitude. The scope of this work is to exploit both observations and modeling sources to improve the discharge prediction in small catchments with time horizon of 2–8 hours. The models used to achieve the goal are essentially three i) a probabilistic rainfall nowcasting model able to extrapolate the rainfall evolution from observations; ii) a non hydrostatic high-resolution numerical weather prediction (NWP) model; iii) a distributed hydrological model able to provide a streamflow prediction in each pixel of the studied domain. These tools are used, together with radar observations, in a synergistic way, exploiting the information of each element in order to complement each other: observations are used in a frequently updated data assimilation framework to drive the NWP system, whose output is in turn used to improve the information in input to a nowcasting technique; finally nowcasting and NWP outputs are blended, generating an ensemble of rainfall scenarios used to feed the hydrological model and produce a prediction in terms of streamflow. The flood prediction system is applied to three major events occurred on Liguria Region (Italy) first to produce a standard analysis on predefined basin control sections, then using a distributed approach that exploit the capabilities of the employed hydrological model. The results obtained for these three analyzed events show that the use of the present approach is promising. Even if not in all the cases, the blending technique clearly enhances the prediction capacity of the hydrological nowcasting chain with respect to the use of input coming only from the nowcasting technique; moreover, a worsening of the performance is rarely observed and it is nevertheless ascribable to the critical transition between the nowcasting and the NWP model rainfall field.


Atmosphere ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 34 ◽  
Author(s):  
Aida Jabbari ◽  
Jae-Min So ◽  
Deg-Hyo Bae

A numerical weather prediction and a rainfall-runoff model employed to evaluate precipitation and flood forecast for the Imjin River (South and North Korea). The real-time precipitation at point and catchment scales evaluated to select proper hydrological model to couple with atmospheric model. As a major limitation of previous studies, temporal and spatial resolutions of hydrological model are smaller than those of meteorological model. Here, through high resolution of temporal (10 min) and spatial (1 km × 1 km), the optimal resolution determined. The results showed Weather Research and Forecasting (WRF) model underestimated precipitation in point and catchment assessment and its skill was relatively higher for catchment than point scale, as illustrated by the lower Root Mean Square Error (RMSE) of 59.67, 160.48, 68.49 for the catchment and 84.49, 212.80 and 91.53 for the point scale in the events 2002, 2007 and 2011, respectively. The findings led to choose the semi-distributed hydrological model. The variations in temporal and spatial resolutions illustrated accuracy decrease; additionally, the optimal spatial resolution obtained at 8 km and temporal resolution did not affect the inherent inaccuracy of the results. Lead-time variation demonstrated that lead-time dependency was almost negligible below 36 h. With reference to this study, comparisons of model performance provided quantitative knowledge for understanding credibility and restrictions of meteo-hydrological models.


2020 ◽  
Author(s):  
Maria Laura Poletti ◽  
Martina Lagasio ◽  
Francesco Silvestro ◽  
Antonio Parodi ◽  
Flavio Pignone ◽  
...  

<p>The use of the best input for an hydrometeorological chain is one of the key elements to improve the discharge prediction in the framework of early warning system. This fact gains in importance in a region such as Liguria Region , where the presence of many catchments with very small drained area and response time in the order of few hours make the prediction of severe events a critical point.</p><p>The work main scope is to exploit both observations and modelling sources to improve the discharge prediction in small catchments with lead time of 2-8 hours. To pursue this aim in this study the output from the nowcasting technique PhaSt, a spectral-based nowcasting procedure, is used together with the rainfall prediction of WRF NWP model with an hourly cycling 3DVAR data assimilation procedure to produce rainfall scenarios; the continuous distributed hydrological model Continuum, transforms these latter in streamflow scenarios. The connection between the forecasting models outputs is performed through the so called blending  technique, that tries to combine the rainfall fields according to their reliability function of the lead time. The blending has been modified with respect to the standard application using the information retrieved from the NWPS about the total volume on the domain considered and in terms of location of the rainfall structures. The whole chain is applied on some case events of 2014 all over Liguria Region, northern Italy.</p>


Author(s):  
Antonio Parodi ◽  
Martina Lagasio ◽  
Agostino N. Meroni ◽  
Flavio Pignone ◽  
Francesco Silvestro ◽  
...  

AbstractBetween the 4th and the 6th of November 1994, Piedmont and the western part of Liguria (two regions in north-western Italy) were hit by heavy rainfalls that caused the flooding of the Po, the Tanaro rivers and several of their tributaries, causing 70 victims and the displacement of over 2000 people. At the time of the event, no early warning system was in place and the concept of hydro-meteorological forecasting chain was in its infancy, since it was still limited to a reduced number of research applications, strongly constrained by coarse-resolution modelling capabilities both on the meteorological and the hydrological sides. In this study, the skills of the high-resolution CIMA Research Foundation operational hydro-meteorological forecasting chain are tested in the Piedmont 1994 event. The chain includes a cloud-resolving numerical weather prediction (NWP) model, a stochastic rainfall downscaling model, and a continuous distributed hydrological model. This hydro-meteorological chain is tested in a set of operational configurations, meaning that forecast products are used to initialise and force the atmospheric model at the boundaries. The set consists of four experiments with different options of the microphysical scheme, which is known to be a critical parameterisation in this kind of phenomena. Results show that all the configurations produce an adequate and timely forecast (about 2 days ahead) with realistic rainfall fields and, consequently, very good peak flow discharge curves. The added value of the high resolution of the NWP model emerges, in particular, when looking at the location of the convective part of the event, which hit the Liguria region.


2015 ◽  
Vol 16 (4) ◽  
pp. 1843-1856 ◽  
Author(s):  
Silvio Davolio ◽  
Francesco Silvestro ◽  
Piero Malguzzi

Abstract Coupling meteorological and hydrological models is a common and standard practice in the field of flood forecasting. In this study, a numerical weather prediction (NWP) chain based on the BOLogna Limited Area Model (BOLAM) and the MOdello LOCale in Hybrid coordinates (MOLOCH) was coupled with the operational hydrological forecasting chain of the Ligurian Hydro-Meteorological Functional Centre to simulate two major floods that occurred during autumn 2011 in northern Italy. Different atmospheric simulations were performed by varying the grid spacing (between 1.0 and 3.0 km) of the high-resolution meteorological model and the set of initial/boundary conditions driving the NWP chain. The aim was to investigate the impact of these parameters not only from a meteorological perspective, but also in terms of discharge predictions for the two flood events. The operational flood forecasting system was thus used as a tool to validate in a more pragmatic sense the quantitative precipitation forecast obtained from different configurations of the NWP system. The results showed an improvement in flood prediction when a high-resolution grid was employed for atmospheric simulations. In turn, a better description of the evolution of the precipitating convective systems was beneficial for the hydrological prediction. Although the simulations underestimated the severity of both floods, the higher-resolution model chain would have provided useful information to the decision-makers in charge of protecting citizens.


2018 ◽  
Vol 246 ◽  
pp. 01108
Author(s):  
Lili Wang ◽  
Hongjun Bao

The incorporation of numerical weather predictions (NWP) into a flood forecasting system can increase forecast lead times from a few hours to a few days. A single NWP forecast from a single forecast centre, however, is insufficient as it involves considerable non-predictable uncertainties and lead to a high number of false alarms. The availability of global ensemble numerical weather prediction systems through the THORPEX Interactive Grand Global Ensemble’ (TIGGE) offers a new opportunity for flood forecast. The GMKHM distributed hydrological model, which is based on a mixed runoff generation model and overland flow routing model based on kinematic wave theory, and the topographical information of each grid cell extracted from the Digital Elevation Model (DEM), is coupled with ensemble weather predictions based on the TIGGE database (CMC, CMA, ECWMF, UKMO, NCEP) for flood forecast. This paper presents a case study using the coupled flood forecasting model on the Xixian catchment (a drainage area of 8826 km2) located in Henan province, China. A probabilistic discharge is provided as the end product of flood forecast. Results show that the association of the GMKHM model and the TIGGE database gives a promising tool for the anticipation of flood events several days ahead,, comparable with that driven by raingauge observation.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Sheng-Chi Yang ◽  
Tsun-Hua Yang

During an extreme event, having accurate inflow forecasting with enough lead time helps reservoir operators decrease the impact of floods downstream. Furthermore, being able to efficiently operate reservoirs could help maximize flood protection while saving water for drier times of the year. This study combines ensemble quantitative precipitation forecasts and a hydrological model to provide a 3-day reservoir inflow in the Shihmen Reservoir, Taiwan. A total of six historical typhoons were used for model calibration, validation, and application. An understanding of cascaded uncertainties from the numerical weather model through the hydrological model is necessary for a better use for forecasting. This study thus conducted an assessment of forecast uncertainty on magnitude and timing of peak and cumulative inflows. It found that using the ensemble-mean had less uncertainty than randomly selecting individual member. The inflow forecasts with shorter length of cumulative time had a higher uncertainty. The results showed that using the ensemble precipitation forecasts with the hydrological model would have the advantage of extra lead time and serve as a valuable reference for operating reservoirs.


2005 ◽  
Vol 2 ◽  
pp. 59-63 ◽  
Author(s):  
B. Tomassetti ◽  
E. Coppola ◽  
M. Verdecchia ◽  
G. Visconti

Abstract. The increased number of extreme rainfall events seems to be one of the common feature of climate change signal all over the world (Easterlin et al., 2000; Meehl et al., 2000). In the last few years a large number of floods caused by extreme meteorological events has been observed over the river basins of Mediterranean area and they mainly affected small basins (few hundreds until few thousands of square kilometres of drainage area) . A strategic goal of applied meteorology is now to try to predict with high spatial resolution the segments of drainage network where floods may occur. A possible way to reach this aim is the coupling of meteorological mesoscale model with high resolution hydrological model. In this work few case studies of observed floods in the Italian Mediterranean area will be presented. It is shown how a distributed hydrological model, using the precipitation fields predicted by MM5 meteorological model, is able to highlight the area where the major floods may occur.


Sign in / Sign up

Export Citation Format

Share Document