scholarly journals Regional analysis of parameter sensitivity for simulation of streamflow and hydrological fingerprints

2017 ◽  
Author(s):  
Simon Höllering ◽  
Jan Wienhöfer ◽  
Jürgen Ihringer ◽  
Luis Samaniego ◽  
Erwin Zehe

Abstract. Diagnostics of hydrological models is pivotal for a better understanding of catchment functioning. The analysis of dominating parameters for the simulation of streamflow plays a key role for region specific model diagnostics, model calibration or parameter transfer. A major challenge in this analysis of parameter sensitivity is the assessment of both temporal and spatial differences of parameter influences on simulated streamflow response. A methodical approach is presented, wherein a two-tiered global sensitivity analysis on a spatially distributed hydrological model is applied to 14 mesoscale headwater catchments of the river Ruhr in western Germany. The analysis of parameter sensitivity is geared towards two complementary forms of streamflow response targets. The analysis of the temporal dynamics of parameter sensitivity (TEDPAS) is contrasted with sensitivity analysis directed to hydrological fingerprints, i.e. temporally independent and temporally aggregated characteristics of streamflow (INDPAS). The two-tiered approach allows to discern a clarified sensitivity pattern pinpointed to diverse response characteristics, to detect regional differences and to reveal the regional relevance of the response target. Small local differences in the hydroclimatic and topographic setting of the headwaters lead to slight differences in the hydrological functioning, which was revealed by gradual differences in TEDPAS and INDPAS.

2018 ◽  
Vol 22 (1) ◽  
pp. 203-220 ◽  
Author(s):  
Simon Höllering ◽  
Jan Wienhöfer ◽  
Jürgen Ihringer ◽  
Luis Samaniego ◽  
Erwin Zehe

Abstract. Diagnostics of hydrological models are pivotal for a better understanding of catchment functioning, and the analysis of dominating model parameters plays a key role for region-specific calibration or parameter transfer. A major challenge in the analysis of parameter sensitivity is the assessment of both temporal and spatial differences of parameter influences on simulated streamflow response. We present a methodological approach for global sensitivity analysis of hydrological models. The multilevel approach is geared towards complementary forms of streamflow response targets, and combines sensitivity analysis directed to hydrological fingerprints, i.e. temporally independent and temporally aggregated characteristics of streamflow (INDPAS), with the conventional analysis of the temporal dynamics of parameter sensitivity (TEDPAS). The approach was tested in 14 mesoscale headwater catchments of the Ruhr River in western Germany using simulations with the spatially distributed hydrological model mHM. The multilevel analysis with diverse response characteristics allowed us to pinpoint parameter sensitivity patterns much more clearly as compared to using TEDPAS alone. It was not only possible to identify two dominating parameters, for soil moisture dynamics and evapotranspiration, but we could also disentangle the role of these and other parameters with reference to different streamflow characteristics. The combination of TEDPAS and INDPAS further allowed us to detect regional differences in parameter sensitivity and in simulated hydrological functioning, despite the rather small differences in the hydroclimatic and topographic setting of the Ruhr headwaters.


Author(s):  
H. Torab

Abstract Parameter sensitivity for large-scale systems that include several components which interface in series is presented. Large-scale systems can be divided into components or sub-systems to avoid excessive calculations in determining their optimum design. Model Coordination Method of Decomposition (MCMD) is one of the most commonly used methods to solve large-scale engineering optimization problems. In the Model Coordination Method of Decomposition, the vector of coordinating variables can be partitioned into two sub-vectors for systems with several components interacting in series. The first sub-vector consists of those variables that are common among all or most of the elements. The other sub-vector consists of those variables that are common between only two components that are in series. This study focuses on a parameter sensitivity analysis for this special case using MCMD.


2015 ◽  
Vol 34 (4) ◽  
pp. 69-78 ◽  
Author(s):  
Teresa Czyż ◽  
Jan Hauke

Abstract Entropy has been proposed as a significant tool for an analysis of spatial differences. Using Semple and Gauthier’s (1972) transformation of the Shannon entropy statistic into an entropy measure of inequality and their algorithm, an estimation is made of changes in regional inequality in Poland over the years 2005–2012. The inequality is decomposed into total, inter- and intra-regional types, and an analysis is made of relations holding between them.


Sign in / Sign up

Export Citation Format

Share Document