scholarly journals Assessment of streamflow decrease due to climate vs. human influence in a semiarid area

2020 ◽  
Author(s):  
Hamideh Kazemi ◽  
Hossein Hashemi ◽  
Fatemeh Fadia Maghsood ◽  
Seyyed Hasan Hosseini ◽  
Ranjan Sarukkalige ◽  
...  

Abstract. This paper uses the Budyko method to investigate mean annual streamflow changes, due to climate variation and human influence, in the important Karkheh River Basin in western Iran. To validate the results, hydrological modelling (HBV model) and Landsat 5 Thematic Mapper (TM) images were used for the study period between 1980 and 2012. The recently developed DBEST (Detecting Breakpoints and Estimating Segments in Trend) method identified an abrupt negative change in the streamflow trend in 1994–5. The results show that the observed streamflow decrease in the Karkheh River is associated with both climate variation and human influence. The combination of increased irrigated area (from 9 to 19 % of the total basin area), reduction of forests (from 11 to 3 %), and decreasing annual precipitation has significantly reduced streamflow in the basin. Moreover, the results show that the streamflow reduction in the Karkheh Basin is more sensitive to the change in precipitation than temperature.

Water ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2404
Author(s):  
Hamideh Kazemi ◽  
Hossein Hashemi ◽  
Fatemeh Fadia Maghsood ◽  
Seyyed Hasan Hosseini ◽  
Ranjan Sarukkalige ◽  
...  

This paper presents a novel framework comprising analytical, hydrological, and remote sensing techniques to separate the impacts of climate variation and regional human activities on streamflow changes in the Karkheh River basin (KRB) of western Iran. To investigate the type of streamflow changes, the recently developed DBEST algorithm was used to provide a better view of the underlying reasons. The Budyko method and the HBV model were used to investigate the decreasing streamflow, and DBEST detected a non-abrupt change in the streamflow trend, indicating the impacts of human activity in the region. Remote sensing analysis confirmed this finding by distinguishing land-use change in the region. The algorithm found an abrupt change in precipitation, reflecting the impacts of climate variation on streamflow. The final assessment showed that the observed streamflow reduction is associated with both climate variation and human influence. The combination of increased irrigated area (from 9 to 19% of the total basin area), reduction of forests (from 11 to 3%), and decreasing annual precipitation has substantially reduced the streamflow rate in the basin. The developed framework can be implemented in other regions to thoroughly investigate human vs. climate impacts on the hydrological cycle, particularly where data availability is a challenge.


2018 ◽  
Vol 22 (8) ◽  
pp. 4593-4604 ◽  
Author(s):  
Yongqiang Zhang ◽  
David Post

Abstract. Gap-filling streamflow data is a critical step for most hydrological studies, such as streamflow trend, flood, and drought analysis and hydrological response variable estimates and predictions. However, there is a lack of quantitative evaluation of the gap-filled data accuracy in most hydrological studies. Here we show that when the missing data rate is less than 10 %, the gap-filled streamflow data obtained using calibrated hydrological models perform almost the same as the benchmark data (less than 1 % missing) when estimating annual trends for 217 unregulated catchments widely spread across Australia. Furthermore, the relative streamflow trend bias caused by the gap filling is not very large in very dry catchments where the hydrological model calibration is normally poor. Our results clearly demonstrate that the gap filling using hydrological modelling has little impact on the estimation of annual streamflow and its trends.


Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 887 ◽  
Author(s):  
Xu ◽  
Qin ◽  
Ding ◽  
Zhao ◽  
Liu ◽  
...  

Climate variation and land use changes have been widely recognized as two major factors that impact hydrological processes. However, it is difficult to distinguish their contributions to changes in streamflow. Quantifying their contributions to alteration of streamflow is especially important for the sustainable management of water resources. In this study, the changes in streamflow for the period of 1960–2008 at two stations (Dongwan and Luhun) were analyzed in the Yihe watershed in China based on hydrological data series and climate parameters. Using a non-parametric Mann–Kendall (MK) and Pettitt’s test, as well as Budyko analysis, we first examined the trends of hydroclimatic variables and the breakpoint of annual streamflow over the past 50 years. Subsequently, we evaluated the contributions of annual precipitation (P), potential evapotranspiration (PET), and land use condition (represented by w), respectively, to streamflow variation. We observed a decreasing trend for P, as well as increasing trends for PET and w. Annual streamflow showed a significant downward trend with an abrupt change occurring in 1985 during the period of 1960–2008. Accordingly, we divided the studied period into two sub-periods: period I (1960–1985) and period II (1986–2008). The sensitivity of the streamflow to the different environmental factors concerned in this study differed. Streamflow was more sensitive to P than to PET and w. The decrease in P was the greatest contributor to the decline in streamflow, which accounted for 50.01% for Dongwan and 55.36% for Luhun, followed by PET, which accounted for 24.25% for Dongwan and 24.45% for Luhun, and land use change was responsible for 25.25% for Dongwan and 20.19% for Luhun. Although land use change plays a smaller role in streamflow reduction, land use optimization and adjustment still have great significance for future water resource management, since climate variation is difficult to control; however, the pattern optimization of land use can be achieved subjectively.


2018 ◽  
Author(s):  
Yongqiang Zhang ◽  
David Post

Abstract. Gap-filling streamflow data is a critical step for most hydrological studies, such as streamflow trend, flood and drought analysis and hydrological response variable estimates and predictions. However, there is lack of quantitative evaluation of the gap-filled data accuracy in most hydrological studies. Here we show that when the missing rate is less than 10 %, the gap-filled streamflow data obtained using calibrated hydrological models perform almost as same as the benchmark data (less than 1 % missing) for estimating annual trends for 217 unregulated catchments widely spread in Australia. Furthermore, the relative streamflow trend bias caused by the gap-filling is not very large in very dry catchments where the hydrological model calibration is normally poor. Our results clearly demonstrate that the gap-filling using hydrological modelling has little impact on the estimation of annual streamflow and its trends.


2006 ◽  
Author(s):  
Jennifer L. Schuster ◽  
Donald Edmondson ◽  
Crystal L. Park ◽  
Matthew Wachen ◽  
Shauna L. Clen

2013 ◽  
Vol 63 (2) ◽  
pp. 271-281 ◽  
Author(s):  
Magdalena Kokowska-Pawłowska ◽  
Jacek Nowak

Abstract Kokowska-Pawłowska, M. and Nowak, J. 2013. Phosphorus minerals in tonstein; coal seam 405 at Sośnica- Makoszowy coal mine, Upper Silesia, southern Poland. Acta Geologica Polonica, 63 (2), 271-281. Warszawa. The paper presents results of research on tonstein, which constitutes an interburden in coal seam 405 at the Sośnica- Makoszowy coal mine, Makoszowy field (mining level 600 m), Upper Silesia, southern Poland. The mineral and chemical compositions of the tonstein differ from the typical compositions described earlier for tonsteins from Upper Silesia Coal Basin area. Additionally, minerals present in the tonsteins include kaolinite, quartz, kaolinitised biotite and feldspars. The presence of the phosphatic minerals apatite and goyazite has been recognized. The presence of gorceixite and crandallite is also possible. The contents of CaO (5.66 wt%) and P2O5 (6.2 wt%) are remarkably high. Analysis of selected trace elements demonstrated high contents of Sr (4937 ppm) and Ba (4300 ppm), related to the phosphatic minerals. On the basis of mineral composition the tonstein has been identified as a crystalline tonstein, transitional to a multiplied one.


Sign in / Sign up

Export Citation Format

Share Document