scholarly journals Review of "Technical note: Precipitation phase partitioning at landscape-to-regional scales"

2020 ◽  
Author(s):  
Alan M Rhoades
Author(s):  
Elissa Lynn ◽  
Aaron Cuthbertson ◽  
Minxue He ◽  
Jordi P. Vasquez ◽  
Michael L. Anderson ◽  
...  

2020 ◽  
Vol 24 (11) ◽  
pp. 5317-5328
Author(s):  
Elissa Lynn ◽  
Aaron Cuthbertson ◽  
Minxue He ◽  
Jordi P. Vasquez ◽  
Michael L. Anderson ◽  
...  

Abstract. Water management throughout the western United States largely relies on the partitioning of cool season mountain precipitation into rain and snow, particularly snow as it maximizes available water for warm season use. Recent studies indicate a shift toward increased precipitation falling as rain, which is consistent with a warming climate. An approach is presented to estimate precipitation-phase partitioning across landscapes from 1948 to the present by combining fine-scale gridded precipitation data with coarse-scale freezing level and precipitation data from an atmospheric reanalysis. A marriage of these data sets allows for a new approach to estimate spatial patterns and trends in precipitation partitioning over elevational and latitudinal gradients in major water supply basins. This product is used in California as a diagnostic indicator of changing precipitation phase across mountain watersheds. Results show the largest increases in precipitation falling as rain during the past 70 years in lower elevation watersheds located within the climatological rain–snow transition regions of northern California during spring. Further development of the indicator can inform adaptive water management strategy development and implementation in the face of a changing climate.


2020 ◽  
Author(s):  
Elissa Lynn ◽  
Aaron Cuthbertson ◽  
Minxue He ◽  
Jordi P. Vasquez ◽  
Michael L. Anderson ◽  
...  

Abstract. Water management throughout the western United States largely relies on the partitioning of cool season mountain precipitation into rain and snow that helps determine water storage in spring snowpack. Recent studies indicate a shift towards increased precipitation falling as rain, consistent with a warming climate. An approach is presented to estimate precipitation partitioning across landscapes from 1948–present by combining fine scale gridded precipitation data with coarse scale freezing-level and precipitation data from an atmospheric reanalysis. A marriage of these datasets allows for a new approach to estimate spatial patterns and trends in precipitation partitioning over elevational and latitudinal gradients in major water supply basins. This product can be used in California as a diagnostic indicator of changing precipitation phase across mountain watersheds. Results show the largest increases in precipitation falling as rain during the past seven decades in lower elevation watersheds located within the climatological rain-snow transition regions of northern California during spring. Further development of the indicator can inform adaptive water management strategy development and implementation in the face of a changing climate.


2021 ◽  
Vol 13 (11) ◽  
pp. 2183
Author(s):  
Claire Pettersen ◽  
Larry F. Bliven ◽  
Mark S. Kulie ◽  
Norman B. Wood ◽  
Julia A. Shates ◽  
...  

Surface precipitation phase is a fundamental meteorological property with immense importance. Accurate classification of phase from satellite remotely sensed observations is difficult. This study demonstrates the ability of the Precipitation Imaging Package (PIP), a ground-based, in situ precipitation imager, to distinguish precipitation phase. The PIP precipitation phase identification capabilities are compared to observer records from the National Weather Service (NWS) office in Marquette, Michigan, as well as co-located observations from profiling and scanning radars, disdrometer data, and surface meteorological measurements. Examined are 13 events with at least one precipitation phase transition. The PIP-determined onsets and endings of the respective precipitation phase periods agree to within 15 min of NWS observer records for the vast majority of the events. Additionally, the PIP and NWS liquid water equivalent accumulations for 12 of the 13 events were within 10%. Co-located observations from scanning and profiling radars, as well as reanalysis-derived synoptic and thermodynamic conditions, support the accuracy of the precipitation phases identified by the PIP. PIP observations for the phase transition events are compared to output from a parameterization based on wet bulb and near-surface lapse rates to produce a probability of solid precipitation. The PIP phase identification and the parameterization output are consistent. This work highlights the ability of the PIP to properly characterize hydrometeor phase and provide dependable precipitation accumulations under complicated mixed-phase and rain and snow (or vice versa) transition events.


2012 ◽  
Vol 21 (1) ◽  
pp. 11-16 ◽  
Author(s):  
Susan Fager ◽  
Tom Jakobs ◽  
David Beukelman ◽  
Tricia Ternus ◽  
Haylee Schley

Abstract This article summarizes the design and evaluation of a new augmentative and alternative communication (AAC) interface strategy for people with complex communication needs and severe physical limitations. This strategy combines typing, gesture recognition, and word prediction to input text into AAC software using touchscreen or head movement tracking access methods. Eight individuals with movement limitations due to spinal cord injury, amyotrophic lateral sclerosis, polio, and Guillain Barre syndrome participated in the evaluation of the prototype technology using a head-tracking device. Fourteen typical individuals participated in the evaluation of the prototype using a touchscreen.


1998 ◽  
Vol 47 (3) ◽  
pp. 153-160
Author(s):  
Wang ◽  
Park ◽  
Kang ◽  
Oh
Keyword(s):  

1995 ◽  
Vol 95 (3) ◽  
pp. 399-408 ◽  
Author(s):  
Elena Toll ◽  
Federico J. Castillo ◽  
Pierre Crespi ◽  
Michele Crevecoeur ◽  
Hubert Greppin

Sign in / Sign up

Export Citation Format

Share Document