mountain watersheds
Recently Published Documents


TOTAL DOCUMENTS

124
(FIVE YEARS 24)

H-INDEX

17
(FIVE YEARS 2)

2022 ◽  
Vol 12 ◽  
Author(s):  
Kim Vincent ◽  
Hannah Holland-Moritz ◽  
Adam J. Solon ◽  
Eli M. S. Gendron ◽  
Steven K. Schmidt

From the aboveground vegetation to the belowground microbes, terrestrial communities differ between the highly divergent alpine (above treeline) and subalpine (below treeline) ecosystems. Yet, much less is known about the partitioning of microbial communities between alpine and subalpine lakes. Our goal was to determine whether the composition of bacterioplankton communities of high-elevation mountain lakes differed across treeline, identify key players in driving the community composition, and identify potential environmental factors that may be driving differences. To do so, we compared bacterial community composition (using 16S rDNA sequencing) of alpine and subalpine lakes in the Southern Rocky Mountain ecoregion at two time points: once in the early summer and once in the late summer. In the early summer (July), shortly after peak runoff, bacterial communities of alpine lakes were distinct from subalpine lakes. Interestingly, by the end of the summer (approximately 5 weeks after the first visit in August), bacterial communities of alpine and subalpine lakes were no longer distinct. Several bacterial amplicon sequence variants (ASVs) were also identified as key players by significantly contributing to the community dissimilarity. The community divergence across treeline found in the early summer was correlated with several environmental factors, including dissolved organic carbon (DOC), pH, chlorophyll-a (chl-a), and total dissolved nitrogen (TDN). In this paper, we offer several potential scenarios driven by both biotic and abiotic factors that could lead to the observed patterns. While the mechanisms for these patterns are yet to be determined, the community dissimilarity in the early summer correlates with the timing of increased hydrologic connections with the terrestrial environment. Springtime snowmelt brings the flushing of mountain watersheds that connects terrestrial and aquatic ecosystems. This connectivity declines precipitously throughout the summer after snowmelt is complete. Regional climate change is predicted to bring alterations to precipitation and snowpack, which can modify the flushing of solutes, nutrients, and terrestrial microbes into lakes. Future preservation of the unique alpine lake ecosystem is dependent on a better understanding of ecosystem partitioning across treeline and careful consideration of terrestrial-aquatic connections in mountain watersheds.


Author(s):  
Taylor Joyal ◽  
Alexander Fremier ◽  
Jan Boll

In the humid tropics, forest conversion and climate change threaten the hydrological function and stationarity of watersheds, particularly in steep terrain. As climate change intensifies, shifting precipitation patterns and expanding agricultural and pastoral land use may effectively reduce the resilience of headwater catchments. Compounding this problem is the limited long-term monitoring in developing countries for planning in an uncertain future. In this paper, we asked which change, climate or land use, more greatly affects stream discharge in humid tropical mountain watersheds? To answer this question, we used the process-based, spatially distributed Soil Moisture Routing model. After first evaluating model performance (Ns = 0.73), we conducted a global sensitivity analysis to identify the model parameters that most strongly influence simulated watershed discharge. In particular, peak flows are most influenced by input model parameters that represent baseflow and shallow subsurface soil pathways while low flows are most sensitive to antecedent moisture, macropore hydraulic conductivity, soil depth and porosity parameters. We then simulated a range of land use and climate scenarios in three mountain watersheds of central Costa Rica. Our results show that deforestation influences streamflow more than altered precipitation and temperature patterns through changes in first-order hydrologic hillslope processes. However, forest conversion coupled with intensifying precipitation events amplifies hydrological extremes, reducing the hydrological resilience to predicted climate shifts in mountain watersheds of the humid tropics. This finding suggests that reforestation can help mitigate the effects of climate change on streamflow dynamics in the tropics including impacts to water availability, flood pulses, channel geomorphology and aquatic habitat associated with altered flow regimes.


Water ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 2903
Author(s):  
Hui Yang ◽  
Jiansheng Cao

In this study, based on the DEM, we extracted the drainage networks and watersheds of the Daqing Riverwith ArcGIS, investigated the basin characteristicsandthe differences in their spatial distributions and analyzed the relations of the drainagedensity with some surface conditions and how the drainagedensityinfluenced the water yield. The results suggested a power function between the mainstream length and drainage area, showing that withthe increase in basin area, the basins became longer.The result of the power function between the relief and drainage area with negative exponent values means the relief changed more slowly with increasing basin area.The values of the circularity ratio andelongation ratio indicatethat the basin shape of the mountain watersheds in theDaqing River was narrow and predisposed to flooding during periods of heavy rainfall. The orders of the streams in the mountain watersheds ranged from five to seven.The average bifurcation ratio of those nine mountainous watersheds reveals the order of the u+1 rivers in each basin of the Daqing River was on average 4 times larger than that of order u rivers. The drainage density (Dd) was high in the north and low in the south of the Daqing River. Rainfall wasnegatively correlated with drainage density, but the correlation between them was notsignificant atthe 0.05 level. Drainages developed in places with poor vegetation cover.The drainages in the southwest, north and west developed considerably, while drainages in the east and southeast did not develop much. Yet, the available data showed the impact of the watershed area, elongation ratio and drainage density on the water yield was not significant. In contrast, there was a significant positive correlation between channel slope and the water yield modulus. The hypsometric integrals and the relation between drainage density and hypsometric integral suggest that the landform evolution of the mountain basins alongthe Daqing Riverwerein the old stage with no furtherincrease trend of drainage density in the future.


Eos ◽  
2021 ◽  
Vol 102 ◽  
Author(s):  
Saima Sidik

As Earth’s climate changes at an unprecedented rate, the Surface Atmosphere Integrated Field Laboratory is studying precipitation on an unprecedented scale.


2020 ◽  
Author(s):  
Ana Quevedo-Rojas ◽  
Mauricio Jerez-Rico

Tropical cloud forests play a fundamental role in the hydrological cycle of mountain watersheds having the largest biodiversity per unit area. In Venezuela, cloud forests are subject to intense deforestation and fragmentation by farming and cattle-ranching causing soil erosion, water cycle alteration, and biodiversity loss. Reforestation projects used exotic species as Pines and Eucalyptus, native species were rarely planted by lacking knowledge on species requirements and management. We report the performance of 25 native cloud forest species differing in shade-tolerance, planted in mixed assemblies on degraded areas. Tree survival and the individual tree variables: total height, root-collar diameter, tree-slenderness, and crown-ratio were evaluated at 1, 2, 4.5 and 7 years-old. Data was analyzed with a repeated measures analysis of variance mixed model considering species shade-tolerance, light intensity at planting and age as explanatory factors. Survival was over 80%. Shade-intolerant species displayed faster height and root-collar diameter growth. Shade-tolerant species had larger crown ratios due to persistence of lower branches; whereas, shade-intolerant showed signs of crown recession at age 7. Slenderness values from age 4.5 were indicative of good trees stability and health across treatments. The positive results have motivated landowners to establish native species plantations in critical areas with our support.


2020 ◽  
Vol 24 (11) ◽  
pp. 5317-5328
Author(s):  
Elissa Lynn ◽  
Aaron Cuthbertson ◽  
Minxue He ◽  
Jordi P. Vasquez ◽  
Michael L. Anderson ◽  
...  

Abstract. Water management throughout the western United States largely relies on the partitioning of cool season mountain precipitation into rain and snow, particularly snow as it maximizes available water for warm season use. Recent studies indicate a shift toward increased precipitation falling as rain, which is consistent with a warming climate. An approach is presented to estimate precipitation-phase partitioning across landscapes from 1948 to the present by combining fine-scale gridded precipitation data with coarse-scale freezing level and precipitation data from an atmospheric reanalysis. A marriage of these data sets allows for a new approach to estimate spatial patterns and trends in precipitation partitioning over elevational and latitudinal gradients in major water supply basins. This product is used in California as a diagnostic indicator of changing precipitation phase across mountain watersheds. Results show the largest increases in precipitation falling as rain during the past 70 years in lower elevation watersheds located within the climatological rain–snow transition regions of northern California during spring. Further development of the indicator can inform adaptive water management strategy development and implementation in the face of a changing climate.


2020 ◽  
Vol 20 (10) ◽  
pp. 2791-2810
Author(s):  
Corrado Camera ◽  
Adriana Bruggeman ◽  
George Zittis ◽  
Ioannis Sofokleous ◽  
Joël Arnault

Abstract. Coupled atmospheric–hydrologic systems are increasingly used as instruments for flood forecasting and water management purposes, making the performance of the hydrologic routines a key indicator of the model functionality. This study's objectives were (i) to calibrate the one-way-coupled WRF-Hydro model for simulating extreme events in Cyprus with observed precipitation and (ii) to evaluate the model performance when forced with WRF-downscaled (1×1 km2) re-analysis precipitation data (ERA-Interim). This set-up resembles a realistic modelling chain for forecasting applications and climate projections. Streamflow was modelled during extreme rainfall events that occurred in January 1989 (calibration) and November 1994 (validation) over 22 mountain watersheds. In six watersheds, Nash–Sutcliffe efficiencies (NSEs) larger than 0.5 were obtained for both events. The WRF-modelled rainfall showed an average NSE of 0.83 for January 1989 and 0.49 for November 1994. Nevertheless, hydrologic simulations of the two events with the WRF-modelled rainfall and the calibrated WRF-Hydro returned negative streamflow NSE for 13 watersheds in January 1989 and for 18 watersheds in November 1994. These results indicate that small differences in amounts or shifts in time or space of modelled rainfall, in comparison with observed precipitation, can strongly modify the hydrologic response of small watersheds to extreme events. Thus, the calibration of WRF-Hydro for small watersheds depends on the availability of observed rainfall with high temporal and spatial resolution. However, the use of modelled precipitation input data will remain important for studying the effect of future extremes on flooding and water resources.


Geomorphology ◽  
2020 ◽  
Vol 367 ◽  
pp. 107301
Author(s):  
Hiroaki Izumiyama ◽  
Taro Uchida ◽  
Katsuya Horie ◽  
Wataru Sakurai

Sign in / Sign up

Export Citation Format

Share Document