scholarly journals Technical note: Precipitation-phase partitioning at landscape scales to regional scales

2020 ◽  
Vol 24 (11) ◽  
pp. 5317-5328
Author(s):  
Elissa Lynn ◽  
Aaron Cuthbertson ◽  
Minxue He ◽  
Jordi P. Vasquez ◽  
Michael L. Anderson ◽  
...  

Abstract. Water management throughout the western United States largely relies on the partitioning of cool season mountain precipitation into rain and snow, particularly snow as it maximizes available water for warm season use. Recent studies indicate a shift toward increased precipitation falling as rain, which is consistent with a warming climate. An approach is presented to estimate precipitation-phase partitioning across landscapes from 1948 to the present by combining fine-scale gridded precipitation data with coarse-scale freezing level and precipitation data from an atmospheric reanalysis. A marriage of these data sets allows for a new approach to estimate spatial patterns and trends in precipitation partitioning over elevational and latitudinal gradients in major water supply basins. This product is used in California as a diagnostic indicator of changing precipitation phase across mountain watersheds. Results show the largest increases in precipitation falling as rain during the past 70 years in lower elevation watersheds located within the climatological rain–snow transition regions of northern California during spring. Further development of the indicator can inform adaptive water management strategy development and implementation in the face of a changing climate.

2020 ◽  
Author(s):  
Elissa Lynn ◽  
Aaron Cuthbertson ◽  
Minxue He ◽  
Jordi P. Vasquez ◽  
Michael L. Anderson ◽  
...  

Abstract. Water management throughout the western United States largely relies on the partitioning of cool season mountain precipitation into rain and snow that helps determine water storage in spring snowpack. Recent studies indicate a shift towards increased precipitation falling as rain, consistent with a warming climate. An approach is presented to estimate precipitation partitioning across landscapes from 1948–present by combining fine scale gridded precipitation data with coarse scale freezing-level and precipitation data from an atmospheric reanalysis. A marriage of these datasets allows for a new approach to estimate spatial patterns and trends in precipitation partitioning over elevational and latitudinal gradients in major water supply basins. This product can be used in California as a diagnostic indicator of changing precipitation phase across mountain watersheds. Results show the largest increases in precipitation falling as rain during the past seven decades in lower elevation watersheds located within the climatological rain-snow transition regions of northern California during spring. Further development of the indicator can inform adaptive water management strategy development and implementation in the face of a changing climate.


Author(s):  
Elissa Lynn ◽  
Aaron Cuthbertson ◽  
Minxue He ◽  
Jordi P. Vasquez ◽  
Michael L. Anderson ◽  
...  

1958 ◽  
Vol 39 (4) ◽  
pp. 202-204
Author(s):  
Philip Williams

An objective method is developed for forecasting the current day's maximum temperature at Salt Lake City during the warm season, May–October. Good results are obtained by using either the height of the freezing level or the 700-mb temperature at 0800 MST at Salt Lake City combined with the 0830 MST surface temperature and the 0530–0830 MST surface temperature change. Results are compared with subjective forecasts.


Climate ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 19 ◽  
Author(s):  
Abdullah A. Alsumaiei

Efficient water management plans should rely on quantitative metrics for assessing water resource shortage scenarios. This study develops a simplified precipitation index (PI) requiring precipitation data only in order to assess hydrometeorological droughts affecting various hydrological systems. The PI index is inspired by the famous Standardized Precipitation Index (SPI), and it aims to provide the same indication for drought severity and duration while overcoming the disadvantage of needing hydrological data normalization. Avoiding hydrological data normalization overcomes the non-satisfactory results of this procedure that were reported in previous studies. Analysis of groundwater drought drivers in the arid region of Kuwait is presented to test the index applicability at timescales 12 and 24 months using available historical precipitation data from 1958 to 2017. A bivariate joint probability analysis was conducted by Clayton copula to assess the occurrence of certain drought severities and durations. The results showed that PI is comparable to the original SPI and provides drought severity linearly propagating with respect to time. This index constitutes a simple means to help water managers assess and describe the impact of droughts in precipitation-controlled systems and establish appropriate water management plans.


2016 ◽  
Vol 9 (4) ◽  
pp. 1637-1652 ◽  
Author(s):  
Jörg Burdanowitz ◽  
Christian Klepp ◽  
Stephan Bakan

Abstract. The lack of high-quality in situ surface precipitation data over the global ocean so far limits the capability to validate satellite precipitation retrievals. The first systematic ship-based surface precipitation data set OceanRAIN (Ocean Rainfall And Ice-phase precipitation measurement Network) aims at providing a comprehensive statistical basis of in situ precipitation reference data from optical disdrometers at 1 min resolution deployed on various research vessels (RVs). Deriving the precipitation rate for rain and snow requires a priori knowledge of the precipitation phase (PP). Therefore, we present an automatic PP distinction algorithm using available data based on more than 4 years of atmospheric measurements onboard RV Polarstern that covers all climatic regions of the Atlantic Ocean. A time-consuming manual PP distinction within the OceanRAIN post-processing serves as reference, mainly based on 3-hourly present weather information from a human observer. For automation, we find that the combination of air temperature, relative humidity, and 99th percentile of the particle diameter predicts best the PP with respect to the manually determined PP. Excluding mixed phase, this variable combination reaches an accuracy of 91 % when compared to the manually determined PP for 149 635 min of precipitation from RV Polarstern. Including mixed phase (165 632 min), an accuracy of 81.2 % is reached for two independent PP distributions with a slight snow overprediction bias of 0.93. Using two independent PP distributions represents a new method that outperforms the conventional method of using only one PP distribution to statistically derive the PP. The new statistical automatic PP distinction method considerably speeds up the data post-processing within OceanRAIN while introducing an objective PP probability for each PP at 1 min resolution.


2021 ◽  
Author(s):  
Mariya Gorlova

Land use planning recognizes the need for incorporating climate change adaptation strategies to address natural disaster reoccurrence. In 2013, the Rockefeller Foundation developed the 100 Resilient Cities (100RC) model to support initiatives related to climate change and resilience. Globally through the model, cities appointed Chief Resilience Officers (CROs) to develop a vision, lead implementation and establish long-term city resilience. Three major cities in Canada (Toronto, Vancouver and Montreal) are now RC100 cities and subsequently introduced the positions of CROs. The purpose of this research paper is to highlight the current state of interventions in Toronto water management strategies to emphasize the role land use planning can have in Resilience Strategy development. Recommendations will be made based on literature review, policies and best practices scan, as well as stakeholders’ interview analysis. Safety and wellbeing of citizenry are at the forefront of the urban agenda, requiring utmost attention to climate change and precautionary measures against natural disaster. Key words: land use planning, urban water management, Canada, resilient cities


2009 ◽  
Vol 22 (13) ◽  
pp. 3729-3750 ◽  
Author(s):  
D. W. Stahle ◽  
M. K. Cleaveland ◽  
H. D. Grissino-Mayer ◽  
R. D. Griffin ◽  
F. K. Fye ◽  
...  

Abstract Precipitation over the southwestern United States exhibits distinctive seasonality, and contrasting ocean–atmospheric dynamics are involved in the interannual variability of cool- and warm-season totals. Tree-ring chronologies based on annual-ring widths of conifers in the southwestern United States are well correlated with accumulated precipitation and have previously been used to reconstruct cool-season and annual precipitation totals. However, annual-ring-width chronologies cannot typically be used to derive a specific record of summer monsoon-season precipitation. Some southwestern conifers exhibit a clear anatomical transition from the earlywood and latewood components of the annual ring, and these exactly dated subannual ring components can be measured separately and used as unique proxies of cool- and warm-season precipitation and their associated large-scale ocean–atmospheric dynamics. Two 2139-yr-long reconstructions of cool- (November–May) and early-warm season (July) precipitation have been developed from ancient conifers and relict wood at El Malpais National Monument, New Mexico. Both reconstructions have been verified on independent precipitation data and reproduce the spatial correlation patterns detected in the large-scale SST and 500-mb height fields using instrumental precipitation data from New Mexico. Above-average precipitation in the cool-season reconstruction is related to El Niño conditions and to the positive phase of the Pacific decadal oscillation. Above-average precipitation in July is related to the onset of the North American monsoon over New Mexico and with anomalies in the 500-mb height field favoring moisture advection into the Southwest from the North Pacific, the Gulf of California, and the Gulf of Mexico. Cool- and warm-season precipitation totals are not correlated on an interannual basis in the 74-yr instrumental or 2139-yr reconstructed records, but wet winter–spring extremes tend to be followed by dry conditions in July and very dry winters tend to be followed by wet Julys in the reconstructions. This antiphasing of extremes could arise from the hypothesized cool- to early-warm-season change in the sign of large-scale ocean–atmospheric forcing of southwestern precipitation, from the negative land surface feedback hypothesis in which winter–spring precipitation and snow cover reduce surface warming and delay the onset of the monsoon, or perhaps from an interaction of both large-scale and regional forcing. Episodes of simultaneous interseasonal drought (“perfect” interseasonal drought) persisted for a decade or more during the 1950s drought of the instrumental era and during the eighth- and sixteenth-century droughts, which appear to have been two of the most profound droughts over the Southwest in the past 1400 yr. Simultaneous interseasonal drought is doubly detrimental to dry-land crop yields and is estimated to have occurred during the mid-seventeenth-century famines of colonial New Mexico but was less frequent during the late-thirteenth-century Great Drought among the Anasazi, which was most severe during the cool season.


2020 ◽  
Author(s):  
Hyeon-seok Do ◽  
Joowan Kim

<div> <div> <div> <p>This study examines long-term changes of precipitation characteristics in South Korea focusing on warm season (June-September). Daily precipitation data are obtained from 15 surface stations that have continuously observed precipitation for 58 years (1961 – 2018). Precipitation characteristics and their long-term changes are examined including trend, amount, and intensity. The warm- season precipitation in South Korea is largely affected by the East Asian Summer Monsoon, which causes rainy season in late July and mid August (these are called “Changma” and “Post-Changma” seasons in Korea). Thus, these characteristics are also analyzed focusing on Changma season.</p> <p>The warm-season precipitation increased roughly by 1.0 mm per day for the last thirty years. The change is particularly pronounced during Changma season, and it shows 1.6 mm of daily precipitation increase. Trend analysis for the 58 years also showed a consistent and significant result. The precipitation change is mostly founded in the intensity of 30 – 110 mm per day implying that the precipitation intensity is increasing in warm season. Multiple regression analysis further suggests that this change is more related to precipitation intensity than precipitation frequency. Global precipitation data reveals the similar change in precipitation over central eastern China presenting a band-like precipitation increase extending to the Korean peninsula. These results are likely caused by near-surface temperature and moisture increase in a warming climate.</p> </div> </div> </div>


2011 ◽  
Vol 26 (5) ◽  
pp. 756-765 ◽  
Author(s):  
Kimberly L. Elmore

Abstract The National Severe Storms Laboratory (NSSL) has developed a hydrometeor classification algorithm (HCA) for use with the polarimetric upgrade of the current Weather Surveillance Radar-1988 Doppler (WSR-88D) network. The algorithm was developed specifically for warm-season convection, but it will run regardless of season, and so its performance on surface precipitation type during winter events is examined here. The HCA output is compared with collocated (in time and space) observations of precipitation type provided by the public. The Peirce skill score (PSS) shows that the NSSL HCA applied to winter surface precipitation displays little skill, with a PSS of only 0.115. Further analysis indicates that HCA failures are strongly linked to the inability of HCA to accommodate refreezing below the first freezing level and to errors in the melting-level detection algorithm. Entrants in the 2009 American Meteorological Society second annual artificial intelligence competition developed classification methods that yield a PSS of 0.35 using a subset of available radar data merged with limited environmental data. Thus, when polarimetric radar data and environmental data are appropriately combined, more information about winter surface precipitation type is available than from either data source alone.


Sign in / Sign up

Export Citation Format

Share Document