scholarly journals Predicting Sediment Discharge at Water Treatment Plant Under Different Land Use Scenarios Coupling Expert-Based GIS Model and Deep Neural Network

2020 ◽  
Author(s):  
Edouard Patault ◽  
Valentin Landemaine ◽  
Jérôme Ledun ◽  
Arnaud Soulignac ◽  
Matthieu Fournier ◽  
...  

Abstract. Excessive sediment discharge at karstic springs and thus, water treatment plants, can be highly disruptive. It is essential for catchment stakeholders and drinking water supplier to reduce the impact of sediment on potable water supply, but their strategic choices must be based on simulations, integrating surface and groundwater transfers, and taking into account possible changes in land use. Karstic environments are particularly challenging as they face a lack of accurate physical description for the modelling process, and they can be seen as a black-box due to the non-linearity of the processes generating sediment discharge. The aim of the study was to assess the sediment discharge variability at a water treatment plant according to multiple realistic land use scenarios. To reach that goal, we developed a new coupled modelling approach with an erosion-runoff GIS model (WaterSed) and a deep neural network. The model was used in the Radicatel catchment (106 km2 in Normandy, France) where karstic spring water is extracted to a water treatment plant. The sediment discharge was simulated for five designed storm projects under current land use and compared to three land use scenarios (baseline, ploughing up of grassland, eco-engineering, best farming practices). Daily rainfall time series and WaterSed modelling outputs extracted at connected sinkholes were used as input data for the deep neural network model. The model structure was found by a classical trial and error procedure, and the model was trained on two significant hydrologic years. Evaluation on a test set showed a good performance of the model (NSE = 0.82), and the application of a monthly-backward chaining nested cross validation revealed that the model is able to generalize on new datasets. Simulations made for the three land use scenarios suggested that ploughing up 33 % of grasslands would not increase significantly sediment discharge at the water treatment plant (5 % in average). In the opposite, eco-engineering and best farming practices will significantly reduce sediment discharge at the water treatment plant (respectively in the range of 10–44 and 24–61 %). The coupling of these two strategies is the most efficient since it affects the hydro-sedimentary production and transfer processes (decreasing sediment discharge from 40 to 80 %). The coupled modelling approach developed in this study offers interesting opportunities for sediment discharge prediction at karstic springs or water treatment plant under multiple land use scenarios. It also provides robust decision-making tools for land use planning and drinking water suppliers.

2021 ◽  
Vol 25 (12) ◽  
pp. 6223-6238
Author(s):  
Edouard Patault ◽  
Valentin Landemaine ◽  
Jérôme Ledun ◽  
Arnaud Soulignac ◽  
Matthieu Fournier ◽  
...  

Abstract. Excessive sediment discharge in karstic regions can be highly disruptive to water treatment plants. It is essential for catchment stakeholders and drinking water suppliers to limit the impact of high sediment loads on potable water supply, but their strategic choices must be based on simulations integrating surface and groundwater transfers and taking into account possible changes in land use. Karstic environments are particularly challenging as they face a lack of accurate physical descriptions for the modelling process, and they can be particularly complex to predict due to the non-linearity of the processes generating sediment discharge. The aim of the study was to assess the sediment discharge variability at a water treatment plant according to multiple realistic land use scenarios. To reach that goal, we developed a new cascade modelling approach with an erosion-runoff geographic information system (GIS) model (WaterSed) and a deep neural network. The model was used in the Radicatel hydrogeological catchment (106 km2 in Normandy, France), where karstic spring water is extracted to a water treatment plant. The sediment discharge was simulated for five design storms under current land use and compared to four land use scenarios (baseline, ploughing up of grassland, eco-engineering, best farming practices, and coupling of eco-engineering/best farming practices). Daily rainfall time series and WaterSed modelling outputs extracted at connected sinkholes (positive dye tracing) were used as input data for the deep neural network model. The model structure was found by a classical trial-and-error procedure, and the model was trained on 2 significant hydrologic years. Evaluation on a test set showed a good performance of the model (NSE = 0.82), and the application of a monthly backward-chaining nested cross-validation revealed that the model is able to generalize on new datasets. Simulations made for the four land use scenarios suggested that ploughing up 33 % of grasslands would increase sediment discharge at the water treatment plant by 5 % on average. By contrast, eco-engineering and best farming practices will significantly reduce sediment discharge at the water treatment plant (respectively in the ranges of 10 %–44 % and 24 %–61 %). The coupling of these two strategies is the most efficient since it affects the hydro-sedimentary production and transfer processes (decreasing sediment discharge from 40 % to 80 %). The cascade modelling approach developed in this study offers interesting opportunities for sediment discharge prediction at karstic springs or water treatment plants under multiple land use scenarios. It also provides robust decision-making tools for land use planning and drinking water suppliers.


2000 ◽  
Vol 42 (3-4) ◽  
pp. 403-408 ◽  
Author(s):  
R.-F. Yu ◽  
S.-F. Kang ◽  
S.-L. Liaw ◽  
M.-c. Chen

Coagulant dosing is one of the major operation costs in water treatment plant, and conventional control of this process for most plants is generally determined by the jar test. However, this method can only provide periodic information and is difficult to apply to automatic control. This paper presents the feasibility of applying artificial neural network (ANN) to automatically control the coagulant dosing in water treatment plant. Five on-line monitoring variables including turbidity (NTUin), pH (pHin) and conductivity (Conin) in raw water, effluent turbidity (NTUout) of settling tank, and alum dosage (Dos) were used to build the coagulant dosing prediction model. Three methods including regression model, time series model and ANN models were used to predict alum dosage. According to the result of this study, the regression model performed a poor prediction on coagulant dosage. Both time-series and ANN models performed precise prediction results of dosage. The ANN model with ahead coagulant dosage performed the best prediction of alum dosage with a R2 of 0.97 (RMS=0.016), very low average predicted error of 0.75 mg/L of alum were also found in the ANN model. Consequently, the application of ANN model to control the coagulant dosing is feasible in water treatment.


2007 ◽  
Vol 7 (15) ◽  
pp. 2006-2010 ◽  
Author(s):  
Duduku Krishnaiah ◽  
Siva Kumar Kumaresan . ◽  
Matthew Isidore . ◽  
Rosalam Sarbatly .

Sign in / Sign up

Export Citation Format

Share Document