Application of artificial neural network to control the coagulant dosing in water treatment plant

2000 ◽  
Vol 42 (3-4) ◽  
pp. 403-408 ◽  
Author(s):  
R.-F. Yu ◽  
S.-F. Kang ◽  
S.-L. Liaw ◽  
M.-c. Chen

Coagulant dosing is one of the major operation costs in water treatment plant, and conventional control of this process for most plants is generally determined by the jar test. However, this method can only provide periodic information and is difficult to apply to automatic control. This paper presents the feasibility of applying artificial neural network (ANN) to automatically control the coagulant dosing in water treatment plant. Five on-line monitoring variables including turbidity (NTUin), pH (pHin) and conductivity (Conin) in raw water, effluent turbidity (NTUout) of settling tank, and alum dosage (Dos) were used to build the coagulant dosing prediction model. Three methods including regression model, time series model and ANN models were used to predict alum dosage. According to the result of this study, the regression model performed a poor prediction on coagulant dosage. Both time-series and ANN models performed precise prediction results of dosage. The ANN model with ahead coagulant dosage performed the best prediction of alum dosage with a R2 of 0.97 (RMS=0.016), very low average predicted error of 0.75 mg/L of alum were also found in the ANN model. Consequently, the application of ANN model to control the coagulant dosing is feasible in water treatment.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhonghui Thong ◽  
Jolena Ying Ying Tan ◽  
Eileen Shuzhen Loo ◽  
Yu Wei Phua ◽  
Xavier Liang Shun Chan ◽  
...  

AbstractRegression models are often used to predict age of an individual based on methylation patterns. Artificial neural network (ANN) however was recently shown to be more accurate for age prediction. Additionally, the impact of ethnicity and sex on our previous regression model have not been studied. Furthermore, there is currently no age prediction study investigating the lower limit of input DNA at the bisulfite treatment stage prior to pyrosequencing. Herein, we evaluated both regression and ANN models, and the impact of ethnicity and sex on age prediction for 333 local blood samples using three loci on the pyrosequencing platform. Subsequently, we trained a one locus-based ANN model to reduce the amount of DNA used. We demonstrated that the ANN model has a higher accuracy of age prediction than the regression model. Additionally, we showed that ethnicity did not affect age prediction among local Chinese, Malays and Indians. Although the predicted age of males were marginally overestimated, sex did not impact the accuracy of age prediction. Lastly, we present a one locus, dual CpG model using 25 ng of input DNA that is sufficient for forensic age prediction. In conclusion, the two ANN models validated would be useful for age prediction to provide forensic intelligence leads.


2007 ◽  
Vol 7 (15) ◽  
pp. 2006-2010 ◽  
Author(s):  
Duduku Krishnaiah ◽  
Siva Kumar Kumaresan . ◽  
Matthew Isidore . ◽  
Rosalam Sarbatly .

2017 ◽  
Vol 39 (1) ◽  
pp. 33 ◽  
Author(s):  
Fabio Cosme Rodrigues dos Santos ◽  
André Felipe Henriques Librantz ◽  
Cleber Gustavo Dias ◽  
Sheila Gozzo Rodrigues

Coagulation is one of the most important processes in a drinking-water treatment plant, and it is applied to destabilize impurities in water for the subsequent flocculation stage. Several techniques are currently used in the water industry to determine the best dosage of the coagulant, such as the jar-test method, zeta potential measurements, artificial intelligence methods, comprising neural networks, fuzzy and expert systems, and the combination of the above-mentioned techniques to help operators and engineers in the water treatment process. Current paper presents an artificial neural network approach to evaluate optimum coagulant dosage for various scenarios in raw water quality, using parameters such as raw water color, raw water turbidity, clarified and filtered water turbidity and a calculated Dose Rate to provide the best performance in the filtration process. Another feature in current approach is the use of a backpropagation neural network method to estimate the best coagulant dosage simultaneously at two points of the water treatment plant. Simulation results were compared to the current dosage rate and showed that the proposed system may reduce costs of raw material in water treatment plant. 


Sign in / Sign up

Export Citation Format

Share Document