scholarly journals Review: Hydrologically Informed Machine Learning for Rainfall-Runoff Modelling: Towards Distributed Modelling

2020 ◽  
Author(s):  
Anonymous
2020 ◽  
Author(s):  
Herath Mudiyanselage Viraj Vidura Herath ◽  
Jayashree Chadalawada ◽  
Vladan Babovic

Abstract. Despite showing a great success of applications in many commercial fields, machine learning and data science models in general, show a limited use in scientific fields including hydrology. The approach is often criticized for lack of interpretability and physical consistency. This has led to the emergence of new paradigms, such as Theory Guided Data Science (TGDS) and physics informed machine learning. The motivation behind such approaches is to improve the physical meaningfulness of machine learning models by blending existing scientific knowledge with learning algorithms. Following the same principles, in our prior work (Chadalawada et al., 2020), a new model induction framework was founded on Genetic Programming (GP) namely Machine Learning Rainfall-Runoff Model Induction Toolkit (ML-RR-MI). ML-RR-MI is cable of developing fully-fledged lumped conceptual rainfall-runoff models for a watershed of interest using the building blocks of two flexible rainfall-runoff modelling frameworks (FUSE and SUPERFLEX). In this study, we extend ML-RR-MI towards inducing semi-distributed rainfall-runoff models. This effort is motivated by the desire to address the decreasing meaningfulness of lumped models which tend to particularly deteriorate within large catchments where the spatial heterogeneity of forcing variables and watershed properties are significant. Henceforth, our machine learning approach for rainfall-runoff modelling titled Machine Induction Knowledge-Augmented System Hydrologique Asiatique (MIKA-SHA) captures spatial variabilities and automatically induces rainfall-runoff models for the catchment of interest without any subjectivity in model selection. Currently, MIKA-SHA learns models utilizing the model building components of FUSE and SUPERFLEX. However, the proposed framework can be coupled with any internally coherent collection of building blocks. MIKA-SHA’s model induction capabilities have been tested on the Red Creek catchment near Vestry, Mississippi, United States. The resulted model architectures through MIKA-SHA are compatible with previously reported research findings and fieldwork insights of the watershed and are readily interpretable by hydrologists.


2020 ◽  
Vol 589 ◽  
pp. 125133 ◽  
Author(s):  
Yazid Tikhamarine ◽  
Doudja Souag-Gamane ◽  
Ali Najah Ahmed ◽  
Saad Sh. Sammen ◽  
Ozgur Kisi ◽  
...  

2020 ◽  
Author(s):  
Grey Nearing ◽  
Frederik Kratzert ◽  
Craig Pelissier ◽  
Daniel Klotz ◽  
Jonathan Frame ◽  
...  

<p>This talk addresses aspects of three of the seven UPH themes: (i) time variability and change, (ii) space variability and scaling, and (iii) modeling methods. </p><p>During the community contribution phase of the 23 Unsolved Problems effort, one of the suggested questions was “Does Machine Learning have a real role in hydrological modeling?” The final UPH paper claimed that “Most hydrologists would probably agree that [extrapolating to changing conditions] will require a more process-based rather than calibration-based approach as calibrated conceptual models do not usually extrapolate well.” In this talk we will present a collection of recent experiments that demonstrate how catchment models based on deep learning can account for both temporal nonstationarity and spatial information transfer (e.g., from gauged to ungauged catchments), often achieving significantly superior predictive performance compared to other state-of-the-art (process-based) modeling strategies, while also providing interpretable results. This is due to the fact that deep learning can learn, exploit, and explain catchment and hydrologic similarity in ways and with accuracies that the community has not been able to achieve using traditional methods. </p><p>We argue that the results we have obtained motivate a path forward for hydrological modeling that centers around ‘physics-informed machine learning.’ Future model development might focus on building hybrid (AI + process-informed) models with three objectives: (i) integrating known catchment behaviors into models that are also able to learn directly from data, (ii)  building explainable deep learning models that allow us to extract scientific insights, and (iii) building hybrid models that are also able to simulate unobserved or sparsely observed variables. We argue further that while the sentiments expressed in the UPH paper about process-based modeling are common, the community currently lacks an evidence-based understanding of where and when process-based understanding is important for future predictions, and that addressing this question in a meaningful way will require true hybrids between different modeling approaches.</p><p>We will conclude by providing two fundamentally novel examples of physics-informed machine learning applied to catchment-scale and point-scale modeling: (i) conservation-constrained neural network architectures applied to rainfall-runoff processes, and (ii) integrating machine learning into existing process-based models to learn unmodeled hydrologic behaviors. We will show results from applying these strategies to the CAMELS dataset in a rainfall-runoff context, and also to FluxNet soil moisture data sets.</p>


Author(s):  
Habtamu Tamiru

This paper presents the integrated machine learning and HEC-RAS models for flood inundation mapping in Baro River Basin, Ethiopia. A predictive rainfall-runoff and spatially distributed river simulation models were developed using Artificial Neural Networks (ANNs) and HEC-RAS respectively. Daily rainfall and temperature data of 7-yrs and Topographical Wetness Index (TWI) with a spatial resolution of 50 x 50m were used to train the ANN in R studio. The integration of the spatial and temporal variability in this paper improved the accuracy of the predictive models integrated with ANN and HEC-RAS. The predictive ANN model was tested with the observed daily discharge of the same temporal resolution and the rainfall-runoff result obtained from the tested ANN model was used as input for the HEC-RAS. The flood event of 2005 was used to verify the accuracy of flood generated in the HEC-RAS model by implementing the Normal Difference Water Index (NDWI). The comparison was made between the flood inundation map generated by HEC-RAS and flood events of different periods based on coverage percentage areas and a good agreement was reached with 96 % overlapped areas. The performance of ANN and HEC-RAS models were evaluated with 0.86 and 0.88 values at the training and testing period respectively. Finally, it was concluded that the integration of a machine learning approach with the HEC-RAS model in developing a flood inundation mapping is an appropriate tool to warn residents in this river basin.


2021 ◽  
Vol 25 (8) ◽  
pp. 4373-4401
Author(s):  
Herath Mudiyanselage Viraj Vidura Herath ◽  
Jayashree Chadalawada ◽  
Vladan Babovic

Abstract. Despite showing great success of applications in many commercial fields, machine learning and data science models generally show limited success in many scientific fields, including hydrology (Karpatne et al., 2017). The approach is often criticized for its lack of interpretability and physical consistency. This has led to the emergence of new modelling paradigms, such as theory-guided data science (TGDS) and physics-informed machine learning. The motivation behind such approaches is to improve the physical meaningfulness of machine learning models by blending existing scientific knowledge with learning algorithms. Following the same principles in our prior work (Chadalawada et al., 2020), a new model induction framework was founded on genetic programming (GP), namely the Machine Learning Rainfall–Runoff Model Induction (ML-RR-MI) toolkit. ML-RR-MI is capable of developing fully fledged lumped conceptual rainfall–runoff models for a watershed of interest using the building blocks of two flexible rainfall–runoff modelling frameworks. In this study, we extend ML-RR-MI towards inducing semi-distributed rainfall–runoff models. The meaningfulness and reliability of hydrological inferences gained from lumped models may tend to deteriorate within large catchments where the spatial heterogeneity of forcing variables and watershed properties is significant. This was the motivation behind developing our machine learning approach for distributed rainfall–runoff modelling titled Machine Induction Knowledge Augmented – System Hydrologique Asiatique (MIKA-SHA). MIKA-SHA captures spatial variabilities and automatically induces rainfall–runoff models for the catchment of interest without any explicit user selections. Currently, MIKA-SHA learns models utilizing the model building components of two flexible modelling frameworks. However, the proposed framework can be coupled with any internally coherent collection of building blocks. MIKA-SHA's model induction capabilities have been tested on the Rappahannock River basin near Fredericksburg, Virginia, USA. MIKA-SHA builds and tests many model configurations using the model building components of the two flexible modelling frameworks and quantitatively identifies the optimal model for the watershed of concern. In this study, MIKA-SHA is utilized to identify two optimal models (one from each flexible modelling framework) to capture the runoff dynamics of the Rappahannock River basin. Both optimal models achieve high-efficiency values in hydrograph predictions (both at catchment and subcatchment outlets) and good visual matches with the observed runoff response of the catchment. Furthermore, the resulting model architectures are compatible with previously reported research findings and fieldwork insights of the watershed and are readily interpretable by hydrologists. MIKA-SHA-induced semi-distributed model performances were compared against existing lumped model performances for the same basin. MIKA-SHA-induced optimal models outperform the lumped models used in this study in terms of efficiency values while benefitting hydrologists with more meaningful hydrological inferences about the runoff dynamics of the Rappahannock River basin.


2021 ◽  
Vol 13 (15) ◽  
pp. 8596
Author(s):  
Ozgur Kisi

Management of available water resources needs good planning and to do this, prognostication of hydrological parameters (parameters of the hydrological cycle such as rainfall, runoff, solar radiation, groundwater, evaporation/evapotranspiration) [...]


Sign in / Sign up

Export Citation Format

Share Document