Machine Learning is Central to the Future of Hydrological Modeling

Author(s):  
Grey Nearing ◽  
Frederik Kratzert ◽  
Craig Pelissier ◽  
Daniel Klotz ◽  
Jonathan Frame ◽  
...  

<p>This talk addresses aspects of three of the seven UPH themes: (i) time variability and change, (ii) space variability and scaling, and (iii) modeling methods. </p><p>During the community contribution phase of the 23 Unsolved Problems effort, one of the suggested questions was “Does Machine Learning have a real role in hydrological modeling?” The final UPH paper claimed that “Most hydrologists would probably agree that [extrapolating to changing conditions] will require a more process-based rather than calibration-based approach as calibrated conceptual models do not usually extrapolate well.” In this talk we will present a collection of recent experiments that demonstrate how catchment models based on deep learning can account for both temporal nonstationarity and spatial information transfer (e.g., from gauged to ungauged catchments), often achieving significantly superior predictive performance compared to other state-of-the-art (process-based) modeling strategies, while also providing interpretable results. This is due to the fact that deep learning can learn, exploit, and explain catchment and hydrologic similarity in ways and with accuracies that the community has not been able to achieve using traditional methods. </p><p>We argue that the results we have obtained motivate a path forward for hydrological modeling that centers around ‘physics-informed machine learning.’ Future model development might focus on building hybrid (AI + process-informed) models with three objectives: (i) integrating known catchment behaviors into models that are also able to learn directly from data, (ii)  building explainable deep learning models that allow us to extract scientific insights, and (iii) building hybrid models that are also able to simulate unobserved or sparsely observed variables. We argue further that while the sentiments expressed in the UPH paper about process-based modeling are common, the community currently lacks an evidence-based understanding of where and when process-based understanding is important for future predictions, and that addressing this question in a meaningful way will require true hybrids between different modeling approaches.</p><p>We will conclude by providing two fundamentally novel examples of physics-informed machine learning applied to catchment-scale and point-scale modeling: (i) conservation-constrained neural network architectures applied to rainfall-runoff processes, and (ii) integrating machine learning into existing process-based models to learn unmodeled hydrologic behaviors. We will show results from applying these strategies to the CAMELS dataset in a rainfall-runoff context, and also to FluxNet soil moisture data sets.</p>

2020 ◽  
Author(s):  
Saeed Nosratabadi ◽  
Amir Mosavi ◽  
Ramin Keivani ◽  
Sina Faizollahzadeh Ardabili ◽  
Farshid Aram

Deep learning (DL) and machine learning (ML) methods have recently contributed to the advancement of models in the various aspects of prediction, planning, and uncertainty analysis of smart cities and urban development. This paper presents the state of the art of DL and ML methods used in this realm. Through a novel taxonomy, the advances in model development and new application domains in urban sustainability and smart cities are presented. Findings reveal that five DL and ML methods have been most applied to address the different aspects of smart cities. These are artificial neural networks; support vector machines; decision trees; ensembles, Bayesians, hybrids, and neuro-fuzzy; and deep learning. It is also disclosed that energy, health, and urban transport are the main domains of smart cities that DL and ML methods contributed in to address their problems.


Author(s):  
Alaeddine Moussa ◽  
Sébastien Fournier ◽  
Bernard Espinasse

Data is the central element of a geographic information system (GIS) and its cost is often high because of the substantial investment that allows its production. However, these data are often restricted to a service or a category of users. This has highlighted the need to propose and optimize the means of enriching spatial information relevant to a larger number of users. In this chapter, a data enrichment approach that integrates recent advances in machine learning; more precisely, the use of deep learning to optimize the enrichment of GDBs is proposed, specifically, during the topic identification phase. The evaluation of the approach was completed showing its performance.


2020 ◽  
Author(s):  
Ralf Loritz ◽  
Uwe Ehret ◽  
Malte Neuper ◽  
Erwin Zehe

<p><em>How important is information about distributed precipitation when we do rainfall-runoff modeling on the catchments scale?</em></p><p>The latter is surely one of the more frequently asked research questions in hydrological modeling. Most studies tackling the issue seem thereby to agree that distributed precipitation becomes more important if the ratio of catchment size against storm size decreases or if the spatial gradients of the rainfall field increase. Furthermore, is it often highlighted that catchments are surprisingly effective in smoothing out the spatial variability of the meteorological forcing, at least, if the focus is simulation integral fluxes and average states.</p><p>However, despite these agreements there is no straightforward guidance in the hydrological literature when these thresholds have been reached and when the spatial distribution of the precipitation starts dominating. This is because the answer to the above drawn question depends on the spatial variability of system characteristics, on the system state variables as well as on the strength of the rainfall forcing and its space-time variability. As all three controls vary greatly in space and time it is challenging to identify generally valid rules when information about the distribution of rainfall becomes important for predictive modelling.</p><p>The present study aims to overcome this limitation by developing a model framework to identify periods where the spatial gradients in rainfall intensity are larger than the ability of the landscape to internally dissipate those. This newly developed spatially adaptive modeling approach, uses the spatial information content of the precipitation to control the spatial distribution of our model. The main underlying idea of this approach is to use distributed models only when they are actually needed resulting in 1) a drastic decrease in computational times as well as 2) in a more appropriate representation of a hydrological system. Our results highlight that only during a few periods throughout a hydrological year do distributed precipitation data actually matter. However, they also show that these periods are often highly relevant with respect to certain extremes and that the successful simulation of these extremes require distributed information about the forcing and state of a given system.</p>


Sci ◽  
2022 ◽  
Vol 4 (1) ◽  
pp. 3
Author(s):  
Steinar Valsson ◽  
Ognjen Arandjelović

With the increase in the availability of annotated X-ray image data, there has been an accompanying and consequent increase in research on machine-learning-based, and ion particular deep-learning-based, X-ray image analysis. A major problem with this body of work lies in how newly proposed algorithms are evaluated. Usually, comparative analysis is reduced to the presentation of a single metric, often the area under the receiver operating characteristic curve (AUROC), which does not provide much clinical value or insight and thus fails to communicate the applicability of proposed models. In the present paper, we address this limitation of previous work by presenting a thorough analysis of a state-of-the-art learning approach and hence illuminate various weaknesses of similar algorithms in the literature, which have not yet been fully acknowledged and appreciated. Our analysis was performed on the ChestX-ray14 dataset, which has 14 lung disease labels and metainfo such as patient age, gender, and the relative X-ray direction. We examined the diagnostic significance of different metrics used in the literature including those proposed by the International Medical Device Regulators Forum, and present the qualitative assessment of the spatial information learned by the model. We show that models that have very similar AUROCs can exhibit widely differing clinical applicability. As a result, our work demonstrates the importance of detailed reporting and analysis of the performance of machine-learning approaches in this field, which is crucial both for progress in the field and the adoption of such models in practice.


2022 ◽  
Author(s):  
Zhongrun Xiang ◽  
Ibrahim Demir

Recent studies using latest deep learning algorithms such as LSTM (Long Short-Term Memory) have shown great promise in time-series modeling. There are many studies focusing on the watershed-scale rainfall-runoff modeling or streamflow forecasting, often considering a single watershed with limited generalization capabilities. To improve the model performance, several studies explored an integrated approach by decomposing a large watershed into multiple sub-watersheds with semi-distributed structure. In this study, we propose an innovative physics-informed fully-distributed rainfall-runoff model, NRM-Graph (Neural Runoff Model-Graph), using Graph Neural Networks (GNN) to make full use of spatial information including the flow direction and geographic data. Specifically, we applied a time-series model on each grid cell for its runoff production. The output of each grid cell is then aggregated by a GNN as the final runoff at the watershed outlet. The case study shows that our GNN based model successfully represents the spatial information in predictions. NRM-Graph network has shown less over-fitting and a significant improvement on the model performance compared to the baselines with spatial information. Our research further confirms the importance of spatially distributed hydrological information in rainfall-runoff modeling using deep learning, and we encourage researchers to incorporate more domain knowledge in modeling.


2021 ◽  
Author(s):  
Daniel Klotz ◽  
Frederik Kratzert ◽  
Martin Gauch ◽  
Alden Keefe Sampson ◽  
Johannes Brandstetter ◽  
...  

Abstract. Deep Learning is becoming an increasingly important way to produce accurate hydrological predictions across a wide range of spatial and temporal scales. Uncertainty estimations are critical for actionable hydrological forecasting, and while standardized community benchmarks are becoming an increasingly important part of hydrological model development and research, similar tools for benchmarking uncertainty estimation are lacking. This contributions demonstrates that accurate uncertainty predictions can be obtained with Deep Learning. We establish an uncertainty estimation benchmarking procedure and present four Deep Learning baselines. Three baselines are based on Mixture Density Networks and one is based on Monte Carlo dropout. The results indicate that these approaches constitute strong baselines, especially the former ones. Additionaly, we provide a post-hoc model analysis to put forward some qualitative understanding of the resulting models. This analysis extends the notion of performance and show that learn nuanced behaviors in different situations.


Author(s):  
Saeed Nosratabadi ◽  
Amir Mosavi ◽  
Ramin Keivani ◽  
Sina Faizollahzadeh ardabili ◽  
Farshid Aram

Deep learning (DL) and machine learning (ML) methods have recently contributed to the advancement of models in the various aspects of prediction, planning, and uncertainty analysis of smart cities and urban development. This paper presents the state of the art of DL and ML methods used in this realm. Through a novel taxonomy, the advances in model development and new application domains in urban sustainability and smart cities are presented. Findings reveal that five DL and ML methods have been most applied to address the different aspects of smart cities. These are artificial neural networks; support vector machines; decision trees; ensembles, Bayesians, hybrids, and neuro-fuzzy; and deep learning. It is also disclosed that energy, health, and urban transport are the main domains of smart cities that DL and ML methods contributed in to address their problems.


2021 ◽  
Author(s):  
Herath Mudiyanselage Viraj Vidura Herath ◽  
Jayashree Chadalawada ◽  
Vladan Babovic

Abstract Relative dominance of the runoff controls, such as topography, geology, soil types, land use, and climate, may differ from catchment to catchment due to spatial and temporal heterogeneity of landscape properties and climate variables. Understanding dominant runoff controls is an essential task in developing unified hydrological theories at the catchment scale. Semi-distributed rainfall-runoff models are often used to identify dominant runoff controls for a catchment of interest. In most such applications, the model selection is based on either expert's judgement or experimental and fieldwork insights. Model selection is the most important step in any hydrological modelling exercise as the findings are largely influenced by the selected model. Hence, a subjective model selection without sufficient expert's knowledge or experimental insights may result in biased findings, especially for comparative studies like identification of dominant runoff controls. In this study, we use a physics informed machine learning toolbox based on genetic programming Machine Induction Knowledge Augmented - System Hydrologique Asiatique (MIKA-SHA) to identify the relative dominance of runoff controls. We find the quantitative and automated approach based on MIKA-SHA to be highly appropriate for the intended task. MIKA-SHA does not require explicit user selections and relies on data and fundamental hydrological processes. The approach is tested using the Rappahannock River basin at Remington, Virginia, United States. Two rainfall-runoff models are learnt to represent the runoff dynamics of the catchment using topography-based and soil-type-based hydrologic response units independently. Based on prediction capabilities, in this case, the topography is identified as the dominant runoff driver.


2021 ◽  
Vol 13 (23) ◽  
pp. 4822
Author(s):  
Waytehad Rose Moskolaï ◽  
Wahabou Abdou ◽  
Albert Dipanda ◽  
Kolyang

Satellite image time series (SITS) is a sequence of satellite images that record a given area at several consecutive times. The aim of such sequences is to use not only spatial information but also the temporal dimension of the data, which is used for multiple real-world applications, such as classification, segmentation, anomaly detection, and prediction. Several traditional machine learning algorithms have been developed and successfully applied to time series for predictions. However, these methods have limitations in some situations, thus deep learning (DL) techniques have been introduced to achieve the best performance. Reviews of machine learning and DL methods for time series prediction problems have been conducted in previous studies. However, to the best of our knowledge, none of these surveys have addressed the specific case of works using DL techniques and satellite images as datasets for predictions. Therefore, this paper concentrates on the DL applications for SITS prediction, giving an overview of the main elements used to design and evaluate the predictive models, namely the architectures, data, optimization functions, and evaluation metrics. The reviewed DL-based models are divided into three categories, namely recurrent neural network-based models, hybrid models, and feed-forward-based models (convolutional neural networks and multi-layer perceptron). The main characteristics of satellite images and the major existing applications in the field of SITS prediction are also presented in this article. These applications include weather forecasting, precipitation nowcasting, spatio-temporal analysis, and missing data reconstruction. Finally, current limitations and proposed workable solutions related to the use of DL for SITS prediction are also highlighted.


Author(s):  
Sumit Kaur

Abstract- Deep learning is an emerging research area in machine learning and pattern recognition field which has been presented with the goal of drawing Machine Learning nearer to one of its unique objectives, Artificial Intelligence. It tries to mimic the human brain, which is capable of processing and learning from the complex input data and solving different kinds of complicated tasks well. Deep learning (DL) basically based on a set of supervised and unsupervised algorithms that attempt to model higher level abstractions in data and make it self-learning for hierarchical representation for classification. In the recent years, it has attracted much attention due to its state-of-the-art performance in diverse areas like object perception, speech recognition, computer vision, collaborative filtering and natural language processing. This paper will present a survey on different deep learning techniques for remote sensing image classification. 


Sign in / Sign up

Export Citation Format

Share Document