scholarly journals A review of the (Revised) Universal Soil Loss Equation ((R)USLE): with a view to increasing its global applicability and improving soil loss estimates

2018 ◽  
Vol 22 (11) ◽  
pp. 6059-6086 ◽  
Author(s):  
Rubianca Benavidez ◽  
Bethanna Jackson ◽  
Deborah Maxwell ◽  
Kevin Norton

Abstract. Soil erosion is a major problem around the world because of its effects on soil productivity, nutrient loss, siltation in water bodies, and degradation of water quality. By understanding the driving forces behind soil erosion, we can more easily identify erosion-prone areas within a landscape to address the problem strategically. Soil erosion models have been used to assist in this task. One of the most commonly used soil erosion models is the Universal Soil Loss Equation (USLE) and its family of models: the Revised Universal Soil Loss Equation (RUSLE), the Revised Universal Soil Loss Equation version 2 (RUSLE2), and the Modified Universal Soil Loss Equation (MUSLE). This paper reviews the different sub-factors of USLE and RUSLE, and analyses how different studies around the world have adapted the equations to local conditions. We compiled these studies and equations to serve as a reference for other researchers working with (R)USLE and related approaches. Within each sub-factor section, the strengths and limitations of the different equations are discussed, and guidance is given as to which equations may be most appropriate for particular climate types, spatial resolution, and temporal scale. We investigate some of the limitations of existing (R)USLE formulations, such as uncertainty issues given the simple empirical nature of the model and many of its sub-components; uncertainty issues around data availability; and its inability to account for soil loss from gully erosion, mass wasting events, or predicting potential sediment yields to streams. Recommendations on how to overcome some of the uncertainties associated with the model are given. Several key future directions to refine it are outlined: e.g. incorporating soil loss from other types of soil erosion, estimating soil loss at sub-annual temporal scales, and compiling consistent units for the future literature to reduce confusion and errors caused by mismatching units. The potential of combining (R)USLE with the Compound Topographic Index (CTI) and sediment delivery ratio (SDR) to account for gully erosion and sediment yield to streams respectively is discussed. Overall, the aim of this paper is to review the (R)USLE and its sub-factors, and to elucidate the caveats, limitations, and recommendations for future applications of these soil erosion models. We hope these recommendations will help researchers more robustly apply (R)USLE in a range of geoclimatic regions with varying data availability, and modelling different land cover scenarios at finer spatial and temporal scales (e.g. at the field scale with different cropping options).

2018 ◽  
Author(s):  
Rubianca Benavidez ◽  
Bethanna Jackson ◽  
Deborah Maxwell ◽  
Kevin Norton

Abstract. Soil erosion is a major problem around the world because of its effects on soil productivity, nutrient loss, siltation in water bodies, and degradation of water quality. By understanding the driving forces behind soil erosion, we can more easily identify erosion-prone areas within a landscape and use land management and other strategies to effectively manage the problem. Soil erosion models have been used to assist in this task. One of the most commonly used soil erosion models is the Universal Soil Loss Equation (USLE) and its family of models: the Revised Universal Soil Loss Equation (RUSLE), the Revised Universal Soil Loss Equation version 2 (RUSLE2), and the Modified Universal Soil Loss Equation (MUSLE). This paper reviewed the different components of USLE and RUSLE etc., and analysed how different studies around the world have adapted the equations to local conditions. We compiled these studies and equations to serve as a reference for other researchers working with R/USLE and related approaches. We investigate some of the limitations of R/USLE, such as issues in data-sparse regions, its inability to account for soil loss from gully erosion or mass wasting events, and that it does not predict sediment pathways from hillslopes to water bodies. These limitations point to several future directions for R/USLE studies: incorporating soil loss from other types of soil erosion, estimating soil loss at sub-annual temporal scales, and using consistent units for future literature. These recommendations help to improve the applicability of the R/USLE in a range of geoclimatic regions with varying data availability, and at finer spatial and temporal scales for scenario analysis.


Soil Research ◽  
1989 ◽  
Vol 27 (1) ◽  
pp. 199 ◽  
Author(s):  
DM Freebairn ◽  
DM Silburn ◽  
RJ Loch

The Universal Soil Loss Equation (USLE) and two modified USLE models were assessed for their ability to predict soil erosion on contour bay catchments on the Darling Downs, Queensland. The models were applied using USLE handbook values as well as optimized values determined by fitting the models to the experimental data. All three models explained greater than 80% of the variance in measured soil loss with no single model being consistently superior to the others. Cover reduced erosion more than that predicted by the USLE.


Author(s):  
Hammad Gilani ◽  
Adeel Ahmad ◽  
Isma Younes ◽  
Sawaid Abbas

Abrupt changes in climatic factors, exploitation of natural resources, and land degradation contribute to soil erosion. This study provides the first comprehensive analysis of annual soil erosion dynamics in Pakistan for 2005 and 2015 using publically available climatic, topographic, soil type, and land cover geospatial datasets at 1 km spatial resolution. A well-accepted and widely applied Revised Universal Soil Loss Equation (RUSLE) was implemented for the annual soil erosion estimations and mapping by incorporating six factors; rainfall erosivity (R), soil erodibility (K), slope-length (L), slope-steepness (S), cover management (C) and conservation practice (P). We used a cross tabular or change matrix method to assess the annual soil erosion (ton/ha/year) changes (2005-2015) in terms of areas and spatial distriburtions in four soil erosion classes; i.e. Low (<1), Medium (1–5], High (5-20], and Very high (>20). Major findings of this paper indicated that, at the national scale, an estimated annual soil erosion of 1.79 ± 11.52 ton/ha/year (mean ± standard deviation) was observed in 2005, which increased to 2.47 ±18.14 ton/ha/year in 2015. Among seven administrative units of Pakistan, in Azad Jammu & Kashmir, the average soil erosion doubled from 14.44 ± 35.70 ton/ha/year in 2005 to 28.03 ± 68.24 ton/ha/year in 2015. Spatially explicit and temporal annual analysis of soil erosion provided in this study is essential for various purposes, including the soil conservation and management practices, environmental impact assessment studies, among others.


Author(s):  
Sumayyah Aimi Mohd Najib

To determine the soil erosion in ungauged catchments, the author used 2 methods: Universal Soil Loss Equation model and sampling data. Sampling data were used to verify and validate data from model. Changing land use due to human activities will affect soil erosion. Land use has changed significantly during the last century in Pulau Pinang. The main rapid changes are related to agriculture, settlement, and urbanization. Because soil erosion depends on surface runoff, which is regulated by the structure of land use and brought about through changes in slope length, land-use changes are one of many factors influencing land degradation caused by erosion. The Universal Soil Loss Equation was used to estimate past soil erosion based on land uses from 1974 to 2012. Results indicated a significant increase in three land-use categories: forestry, built-up areas, and agriculture. Another method to evaluate land use changes in this study was by using landscape metrics analysis. The mean patch size of built-up area and forest increased, while agriculture land use decreased from 48.82 patches in 1974 to 22.46 patches in 2012. Soil erosion increased from an estimated 110.18 ton/km2/year in 1974 to an estimated 122.44 ton/km2/year in 2012. Soil erosion is highly related (R2 = 0.97) to the Shannon Diversity Index, which describes the diversity in land-use composition in river basins. The Shannon Diversity Index also increased between 1974 and 2012. The findings from this study can be used for future reference and for ungauged catchment research studies.


2016 ◽  
Vol 10 (1) ◽  
pp. 13-25 ◽  
Author(s):  
Veena Joshi ◽  
Nilesh Susware ◽  
Debasree Sinha

USLE (Universal Soil Loss Equation) is the original and the most widely accepted soil loss estimation technique till date which has evolved from a design tool for conservation planning to a research methodology all across the globe. The equation has been revised and modified over the years and became a foundation for several new soil loss models developed all around the world. The equation has been revised as RUSLE by Renard et al. (1991) and is computed in GIS environment. The Revised equation is landuse independent which makes it a useful technique to apply in a variety of environment. The present paper is an attempt to estimate soil loss from a semi-arid watershed in Western Deccan, India by employing RUSLE. The region is a rocky terrain and sediments are restricted to only a few localities. The result indicates that the region is at the threshold of soil tolerance limit.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
D. L. D. Panditharathne ◽  
N. S. Abeysingha ◽  
K. G. S. Nirmanee ◽  
Ananda Mallawatantri

Soil erosion is one of the main forms of land degradation. Erosion contributes to loss of agricultural land productivity and ecological and esthetic values of natural environment, and it impairs the production of safe drinking water and hydroenergy production. Thus, assessment of soil erosion and identifying the lands more prone to erosion are vital for erosion management process. Revised Universal Soil Loss Equation (Rusle) model supported by a GIS system was used to assess the spatial variability of erosion occurring at Kalu Ganga river basin in Sri Lanka. Digital Elevation Model (30 × 30 m), twenty years’ rainfall data measured at 11 rain gauge stations across the basin, land use and soil maps, and published literature were used as inputs to the model. The average annual soil loss in Kalu Ganga river basin varied from 0 to 134 t ha−1 year−1 and mean annual soil loss was estimated at 0.63 t ha−1 year−1. Based on erosion estimates, the basin landscape was divided into four different erosion severity classes: very low, low, moderate, and high. About 1.68% of the areas (4714 ha) in the river basin were identified with moderate to high erosion severity (>5 t ha−1 year−1) class which urgently need measures to control soil erosion. Lands with moderate to high soil erosion classes were mostly found in Bulathsinghala, Kuruwita, and Rathnapura divisional secretarial divisions. Use of the erosion severity information coupled with basin wide individual RUSLE parameters can help to design the appropriate land use management practices and improved management based on the observations to minimize soil erosion in the basin.


Sign in / Sign up

Export Citation Format

Share Document