scholarly journals Hillslope and groundwater contributions to streamflow in a Rocky Mountain watershed underlain by glacial till and fractured sedimentary bedrock

2021 ◽  
Vol 25 (1) ◽  
pp. 237-255
Author(s):  
Sheena A. Spencer ◽  
Axel E. Anderson ◽  
Uldis Silins ◽  
Adrian L. Collins

Abstract. Permeable sedimentary bedrock overlain by glacial till leads to large storage capacities and complex subsurface flow pathways in the Canadian Rocky Mountain region. While some inferences on the storage and release of water can be drawn from conceptualizations of runoff generation (e.g., runoff thresholds and hydrologic connectivity) in physically similar watersheds, relatively little research has been conducted in snow-dominated watersheds with multilayered permeable substrates that are characteristic of the Canadian Rocky Mountains. Stream water and source water (rain, snowmelt, soil water, hillslope groundwater, till groundwater, and bedrock groundwater) were sampled in four sub-watersheds (Star West Lower, Star West Upper, Star East Lower, and Star East Upper) in Star Creek, SW Alberta, to characterize the spatial and temporal variation in source water contributions to streamflow in upper and lower reaches of this watershed. Principal component analysis was used to determine the relative dominance and timing of source water contributions to streamflow over the 2014 and 2015 hydrologic seasons. An initial displacement of water stored in the hillslope over winter (reacted water rather than unreacted snowmelt and rainfall) occurred at the onset of snowmelt before stream discharge responded significantly. This was followed by a dilution effect as snowmelt saturated the landscape, recharged groundwater, and connected the hillslopes to the stream. Fall baseflows were dominated by either riparian water or hillslope groundwater in Star West. Conversely, in Star East, the composition of stream water was similar to hillslope water in August but plotted outside the boundary of the measured sources in September and October. The chemical composition of groundwater seeps followed the same temporal trend as stream water, but the consistently cold temperatures of the seeps suggested deep groundwater was likely the source of this late fall streamflow. Temperature and chemical signatures of groundwater seeps also suggest highly complex subsurface flow pathways. The insights gained from this research help improve our understanding of the processes by which water is stored and released from watersheds with multilayered subsurface structures.

2020 ◽  
Author(s):  
Sheena A. Spencer ◽  
Axel E. Anderson ◽  
Uldis Silins ◽  
Adrian L. Collins

Abstract. Whereas a lack of streamflow response to significant forest disturbance (e.g., forestry, wildfire, and insect infestation) has been observed at multiple locations in the Canadian Rocky Mountains, a region with sedimentary bedrock overlain by glacial till, mechanisms governing this lack of change remain unclear. Some inferences can be drawn from conceptualizations of runoff generation (e.g., runoff thresholds and hydrologic connectivity) in physically similar watersheds, although much of the focus has been on rainfall-runoff dynamics. Thus, there is a need to describe runoff generation in this snow-dominated area to interpret how forest disturbance may impact streamflow quantity for downstream users. Stream water and source water (snow, rain, hillslope groundwater, till groundwater, bedrock groundwater and seeps) were sampled in four sub-watersheds (Star West Lower, Star West Upper, Star East Lower and Star East Upper) in Star Creek, SW Alberta. Principal component analysis was used to determine the relative dominance and timing of source water contributions to streamflow over the 2014 and 2015 hydrologic seasons. An initial displacement of old water stored in the hillslope over winter occurred at the onset of snowmelt, before the stream responded significantly. This was followed by a dilution effect as snowmelt saturated the landscape, recharged groundwater, and connected the hillslope to the stream. Fall baseflows were dominated by either hillslope groundwater or bedrock groundwater in Star West. Conversely, in Star East, stream water was similar to hillslope water in August but was unlike the measured sources in September and October. Temperature and chemical signatures of groundwater seeps suggest highly complex subsurface flow pathways. Hydrologic resilience in the Rocky Mountain eastern slopes may be, in part, due to these complex subsurface pathways in combination with the slow release of groundwater from glacial till.


2021 ◽  
Author(s):  
Fan Zhang ◽  
Xiong Xiao ◽  
Guanxing Wang

<p>Permafrost degradation under global warming may change the hydrological regime of the headwater catchments in alpine area such as the Tibetan Plateau (TP). In this study, he runoff generation processes in permafrost-influenced area of the Heihe River Headwater were investigated with the following results: 1) The observed stable isotope values of various water types on average was roughly in the order of snowfall and snowmelt < bulk soil water (BSW) < rainfall , stream water, mobile soil water (MSW) , and lateral subsurface flow. The depleted spring snowmelt and enriched summer rainfall formed tightly bound soil water and MSW, respectively. The dynamic mixing between tightly bound soil water and MSW resuted in BSW with more depleted and variable stable isotopic feature than MSW. 2) Along with the thawing of the frozen soil, surface runoff and shallowsubsurface flow (SSF) at 30−60 cm was the major flow pathway in the permafrost influenced alpine meadow hillslope during spring snowmelt and summer rainfall period, reapectively, with the frozen soil maintaining supra-permafrost water level. 3) Comparison between two neighouring catchments under similar precipitation conditions indicated that streamflow of the lower catchment with less permafrost proportion and earlier thawing time has larger SSF and higher based flow component, indicating the potential changes of hydrological regims subject to future warming.</p>


2005 ◽  
Vol 34 (1) ◽  
pp. 274-286 ◽  
Author(s):  
T. J. Gish ◽  
C. L. Walthall ◽  
C. S. T. Daughtry ◽  
K.-J. S. Kung

2016 ◽  
Vol 8 (1) ◽  
pp. 17
Author(s):  
Tadashi Tanaka

Variation of water chemistry does not merely occur due to in situ chemical process, but also transport process. The study was carried out to address the role of subsurface flow dynamic on spatial and temporal variation of water chemistry in a headwater catchment. Hydrometric and hydrochemistry measurements were done in transect with nested piezometers, tensiometers, and suction samplers at different depths across hillslope and riparian zone in a 5.2 ha first-order drainage of the Kawakami experimental basin, Nagano, Central Japan from August 2000 to August 2001. Spatial variation of solute concentration was defined by the standard deviation and coefficient of variation of the seasonal observed concentrations. Autocorrelation analysis was performed to define temporal variation of solute concentration. The results showed that spatial variation of water chemistry was mainly influenced by the variation of subsurface flow through the hillslope and riparian zone. Solute concentration in the deep riparian groundwater was almost three times higher than that in the hillslope segment. A prominent downward flow in deep riparian groundwater zone provided transport of solutes to the deeper layer. Time series analysis showed that in the deep riparian groundwater, Ca2+, Mg2+, SO42- and HCO3- concentrations underwent a random process, Na+ concentration of a random process superimposed by a trend process, and SiO2 of a random process superimposed by a periodic process. Near the riparian surface, SO42- concentration was composed of a random process superimposed by a periodic process, whereas other solutes were mainly in a random process. In the hillslope soil water, there was no trend observed for the Na+ concentration, but there were for Ca2+ and Mg2+. The magnitude and direction of subsurface flow across hillslope and riparian zone created transport and deposition processes that changed solute concentration spatially and temporally.


Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 420 ◽  
Author(s):  
Thuy Hoang Nguyen ◽  
Björn Helm ◽  
Hiroshan Hettiarachchi ◽  
Serena Caucci ◽  
Peter Krebs

Although river water quality monitoring (WQM) networks play an important role in water management, their effectiveness is rarely evaluated. This study aims to evaluate and optimize water quality variables and monitoring sites to explain the spatial and temporal variation of water quality in rivers, using principal component analysis (PCA). A complex water quality dataset from the Freiberger Mulde (FM) river basin in Saxony, Germany was analyzed that included 23 water quality (WQ) parameters monitored at 151 monitoring sites from 2006 to 2016. The subsequent results showed that the water quality of the FM river basin is mainly impacted by weathering processes, historical mining and industrial activities, agriculture, and municipal discharges. The monitoring of 14 critical parameters including boron, calcium, chloride, potassium, sulphate, total inorganic carbon, fluoride, arsenic, zinc, nickel, temperature, oxygen, total organic carbon, and manganese could explain 75.1% of water quality variability. Both sampling locations and time periods were observed, with the resulting mineral contents varying between locations and the organic and oxygen content differing depending on the time period that was monitored. The monitoring sites that were deemed particularly critical were located in the vicinity of the city of Freiberg; the results for the individual months of July and September were determined to be the most significant. In terms of cost-effectiveness, monitoring more parameters at fewer sites would be a more economical approach than the opposite practice. This study illustrates a simple yet reliable approach to support water managers in identifying the optimum monitoring strategies based on the existing monitoring data, when there is a need to reduce the monitoring costs.


1999 ◽  
Vol 3 (4) ◽  
pp. 581-591 ◽  
Author(s):  
M. P. McCartney ◽  
C. Neal

Abstract. Dambos, seasonally saturated wetlands, are widespread in headwater catchments in sub-Saharan Africa. It is widely believed that they play an important role in regional hydrology but, despite research conducted over the last 25 years, their hydrological functions remain poorly understood. To improve conceptualisation of hydrological flow paths and investigate the water balance of a small Zimbabwean catchment containing a single dambo, measurements of alkalinity and chloride in different water types within the catchment have been used as chemical markers. The temporal variation in alkalinity is consistent with the premise that all stream water, including the prolonged dry season recession, is derived predominantly from shallow sources. The proposition that dry season recession flows are maintained by water travelling at depth within the underlying saprolite is not substantiated. There is evidence that a low permeability clay lens, commonly present in many dambos, acts as a barrier for vertical water exchange. However, the highly heterogeneous chemical composition of different waters precludes quantitative hydrograph split-ting using end member mixing analysis. Calculation of the chloride mass-balance confirms that, after rainfall, evaporation is the largest component of the catchment water budget. The study provides improved understanding of the hydrological functioning of dambos. Such understanding is essential for the development and implementation of sustainable management strategies for this landform.


2019 ◽  
Vol 19 (8) ◽  
pp. 2391-2399 ◽  
Author(s):  
Zhuoran Luo ◽  
Shuqi Zhao ◽  
Jin Wu ◽  
Yongxiang Zhang ◽  
Peibin Liu ◽  
...  

Abstract This study was conducted to investigate the groundwater quality features of the Yongding River in Beijing, China, and its relationship with urban development and ecological restoration projects. The Yongding River has been cut off all year around and the ecological environment has continued to deteriorate. Therefore, a series of river ecological restoration projects of ‘Five Lakes on One Route’ have been implemented. In order to characterize the physico-chemical properties of groundwater and evaluate the effects of these projects on groundwater quality, by using principal component analysis, this study analyzed spatial and temporal variation on the basis of 11 water quality parameters at 10 monitoring sites of ‘Five Lakes on One Route’ for Yongding River during April and September of 2011 and 2016. Principal component analysis demonstrated that relatively poor groundwater is mainly distributed in Fengtai District residential and industrial land, and the groundwater in Mentougou District woods is generally better. The groundwater quality at eight monitoring sites kept the same level or became better, and the construction of the river ecological restoration projects of ‘Five Lakes on One Route’ is important for protecting the groundwater resource.


Sign in / Sign up

Export Citation Format

Share Document