scholarly journals From hydraulic root architecture models to macroscopic representations of root hydraulics in soil water flow and land surface models

2021 ◽  
Vol 25 (9) ◽  
pp. 4835-4860
Author(s):  
Jan Vanderborght ◽  
Valentin Couvreur ◽  
Felicien Meunier ◽  
Andrea Schnepf ◽  
Harry Vereecken ◽  
...  

Abstract. Root water uptake is an important process in the terrestrial water cycle. How this process depends on soil water content, root distributions, and root properties is a soil–root hydraulic problem. We compare different approaches to implement root hydraulics in macroscopic soil water flow and land surface models. By upscaling a three-dimensional hydraulic root architecture model, we derived an exact macroscopic root hydraulic model. The macroscopic model uses the following three characteristics: the root system conductance, Krs, the standard uptake fraction, SUF, which represents the uptake from a soil profile with a uniform hydraulic head, and a compensatory matrix that describes the redistribution of water uptake in a non-uniform hydraulic head profile. The two characteristics, Krs and SUF, are sufficient to describe the total uptake as a function of the collar and soil water potential, and water uptake redistribution does not depend on the total uptake or collar water potential. We compared the exact model with two hydraulic root models that make a priori simplifications of the hydraulic root architecture, i.e., the parallel and big root model. The parallel root model uses only two characteristics, Krs and SUF, which can be calculated directly following a bottom-up approach from the 3D hydraulic root architecture. The big root model uses more parameters than the parallel root model, but these parameters cannot be obtained straightforwardly with a bottom-up approach. The big root model was parameterized using a top-down approach, i.e., directly from root segment hydraulic properties, assuming a priori a single big root architecture. This simplification of the hydraulic root architecture led to less accurate descriptions of root water uptake than by the parallel root model. To compute root water uptake in macroscopic soil water flow and land surface models, we recommend the use of the parallel root model with Krs and SUF computed in a bottom-up approach from a known 3D root hydraulic architecture.

2021 ◽  
Author(s):  
Jan Vanderborght ◽  
Valentin Couvreur ◽  
Felicien Meunier ◽  
Andrea Schnepf ◽  
Harry Vereecken ◽  
...  

Abstract. Root water uptake is an important process in the terrestrial water cycle. How this process depends on soil water content, root distributions, and root properties is a soil-root hydraulic problem. We compare different approaches to implement root hydraulics in macroscopic soil water flow and land surface models. By upscaling a three dimensional hydraulic root architecture model, we derived an exact macroscopic root hydraulic model. The macroscopic model uses three characteristics: the root system conductance, Krs, the standard uptake fraction, SUF, that represents the uptake from a soil profile with a uniform hydraulic head, and a compensatory matrix that describes the redistribution of water uptake in a non-uniform hydraulic head profile. Two characteristics, Krs and SUF, are sufficient to describe the total uptake as a function of the collar and soil water potential; and water uptake redistribution does not depend on the total uptake or collar water potential. We compared the exact model with two hydraulic root models that make a-priori simplifications of the hydraulic root architecture: the parallel and big root model. The parallel root model uses only two characteristics, Krs and SUF, that can be calculated directly following a bottom up approach from the 3D hydraulic root architecture. The big root model uses more parameters than the parallel root model but these parameters cannot be obtained straightforwardly with a bottom up approach. The big root model was parameterized using a top down approach, i.e. directly from root segment hydraulic properties assuming a-priori a single big root architecture. This simplification of the hydraulic root architecture led to less accurate descriptions of root water uptake than by the parallel root model. To compute root water uptake in macroscopic soil water flow and land surface models, we recommend the use of the parallel root model with Krs and SUF computed in a bottom up approach from a known 3D root hydraulic architecture.


Soil Science ◽  
2004 ◽  
Vol 169 (1) ◽  
pp. 13-24 ◽  
Author(s):  
Qiang Zuo ◽  
Lei Meng ◽  
Renduo Zhang

2012 ◽  
Vol 11 (3) ◽  
pp. vzj2012.0018 ◽  
Author(s):  
Peter de Willigen ◽  
Jos C. van Dam ◽  
Mathieu Javaux ◽  
Marius Heinen

Water ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 1090 ◽  
Author(s):  
Fu Cai ◽  
Yushu Zhang ◽  
Huiqing Ming ◽  
Na Mi ◽  
Shujie Zhang ◽  
...  

Roots are an important water transport pathway between soil and plant. Root water uptake (RWU) plays a key role in water and heat exchange between plants and the atmosphere. Inaccurate RWU schemes in land surface models are one crucial reason for decreased model performance. Despite some types of RWU functions being adopted in land surface models, none have been certified as suitable for maize farmland ecosystems. Based on 2007–2009 data observed at the maize agroecosystem field station in Jinzhou, China, the RWU function and root distribution (RD) in the Common Land Model (CoLM) were optimized and the effects of the optimizations on model performance were compared. Results showed that RD parameters calculated with root length density were more practical relative to root biomass in reflecting soil water availability, and they improved the simulation accuracy for water and heat fluxes. The modified RWU function also played a significant role in optimizing the simulation of water and heat fluxes. Similarly, the respective and integrated roles of two optimization schemes in improving CoLM performance were significant during continuous non-precipitation days, especially during the key water requirement period of maize. Notably, the improvements were restrained within a threshold of soil water content, and the optimizations were inoperative outside this threshold. Thus, the optimized RWU function and the revised RD introduced into the CoLM model are applicable for simulation of water and heat fluxes for maize farmland ecosystems in arid areas.


2021 ◽  
Vol 9 (1) ◽  
pp. 31-40
Author(s):  
Lisma Safitri ◽  
Andiko Putro Suryotomo ◽  
Satyanto Krido Saptomo

The lack of water resource in these past decades encourages the implementation of the precision agriculture system towards the sustainability in palm oil plantation. Therefore, it requires a specific information about the palm oil performance regarding the water balance system that affect the water consumption through the plant root water uptake. However, the prediction of root water uptake distribution is still a challenge. Another method to investigate the soil water dynamics under the plant root system is through the numerical simulations that are widely use to assess the soil water flow of the plant. In alignment with the idea of promoting the sustainable palm oil plantation, the investigation of root water uptake and water content under oil palm tree is highly demanding. As an introduction, through this study, it is find of interest to simulate the root water uptake and water content pattern of oil palm tree using the 2D simulation soil-water flow.  The study was performed by applying the 2D simulation soil-water flow model to 17th year old oil palm tree located in Siak, Riau with the loam soil type. The climate data was used as primary data to predict the rate of evapotranspiration. The soil properties and root dimension and distribution of oil palm was taken by the literature study. The simulation over 30 days illustrated the root water uptake distribution, water content change, pressure head and flow velocity. The most intensive root water uptake occurred in the upper root zone of oil palm tree as an impact of the higher root density. The significant root water uptake in the upper root zone lead to the decreasing of water content and increasing of pressure head in the soil.  Consequently, there was a change of water flow direction from the wet area in the downward and sideward do dry root zone as the water supply to the oil palm tree.  


2021 ◽  
Author(s):  
Jan Vanderborght ◽  
Valentin Couvreur ◽  
Felicien Meunier ◽  
Andrea Schnepf ◽  
Harry Vereecken ◽  
...  

<p>Plant water uptake from soil is an important component of terrestrial water cycle with strong links to the carbon cycle and the land surface energy budget. To simulate the relation between soil water content, root distribution, and root water uptake, models should represent the hydraulics of the soil-root system and describe the flow from the soil towards root segments and within the 3D root system architecture according to hydraulic principles. We have recently demonstrated how macroscopic relations that describe the lumped water uptake by all root segments in a certain soil volume, e.g. in a thin horizontal soil layer in which soil water potentials are uniform, can be derived from the hydraulic properties of the 3D root architecture. The flow equations within the root system can be scaled up exactly and the total root water uptake from a soil volume depends on only two macroscopic characteristics of the root system: the root system conductance, K<sub>rs</sub>, and the uptake distribution from the soil when soil water potentials in the soil are uniform, <strong>SUF</strong>. When a simple root hydraulic architecture was assumed, these two characteristics were sufficient to describe root water uptake from profiles with a non-uniform water distribution. This simplification gave accurate results when root characteristics were calculated directly from the root hydraulic architecture. In a next step, we investigate how the resistance to flow in the soil surrounding the root can be considered in a macroscopic root water uptake model. We specifically investigate whether the macroscopic representation of the flow in the root architecture, which predicts an effective xylem water potential at a certain soil depth, can be coupled with a model that describes the transfer from the soil to the root using a simplified representation of the root distribution in a certain soil layer, i.e. assuming a uniform root distribution.</p>


2021 ◽  
Author(s):  
Lukas Strebel ◽  
Heye Bogena ◽  
Harry Vereecken ◽  
Harrie-Jan Hendricks Franssen

Abstract. Land surface models are important for improving our understanding of the earth system. They are continuously improving and becoming more accurate in describing the varied surface processes, e.g. the Community Land Model version 5 (CLM5). Similarly, observational networks and remote sensing operations are increasingly providing more and higher quality data. For the optimal combination of land surface models and observation data, data assimilation techniques have been developed in the past decades that incorporate observations to update modeled states and parameters. The Parallel Data Assimilation Framework (PDAF) is a software environment that enables ensemble data assimilation and simplifies the implementation of data assimilation systems in numerical models. In this paper, we present the further development of the PDAF to enable its application in combination with CLM5. This novel coupling adapts the optional CLM5 ensemble mode to enable integration of PDAF filter routines while keeping changes to the pre-existing parallel communication infrastructure to a minimum. Soil water content observations from an extensive in-situ measurement network in the Wüstebach catchment in Germany are used to illustrate the application of the coupled CLM5+PDAF system. The results show overall reductions in root mean square error of soil water content from 7 % up to 35 % compared to simulations without data assimilation. We expect the coupled CLM5+PDAF system to provide a basis for improved regional to global land surface modelling by enabling the assimilation of globally available observational data.


Sign in / Sign up

Export Citation Format

Share Document