scholarly journals Determination of fluid transmissivity and electric transverse resistance for shallow aquifers and deep reservoirs from surface and well-log electric measurements

1999 ◽  
Vol 3 (3) ◽  
pp. 421-427 ◽  
Author(s):  
H. S. Salem

Abstract. Fluid transmissivity (layer thickness times permeability) and electric transverse resistance (layer thickness time resistivity) are important parameter in groundwater and hydrocarbon exploration. Determination of these parameters provides a good knowledge of the potential of porous media, because they relate fluid flow to electric-current conduction, in terms of layer thickness, permeability and resistivity. In this study, both parameters were determined for shallow aquifers (Schleswig-Holstein, northern Germany) and deep reservoirs (Jeanne d'Arc Basin, offshore of eastern Canada), utilizing surface and well-log electric measurements. Direct relationships between both parameters, with coefficients of correlation of 0.99 (for the aquifers) and 0.94 (for the reservoirs), were obtained. The relationships suggest that an increase in both parameters indicate presence of zones of high fluid potential within the aquifers and the reservoirs.

2021 ◽  
Vol 0 (9) ◽  
pp. 17-21
Author(s):  
O. A. Dvoryankin ◽  
◽  
N. I. Baurova ◽  

Analysis of 3D-printing methods used in the molding production to manufacture master-models has been carried out. The technology was selected, which allowed one to make high-precision parts, combining the molding and the 3D-printing. Factors effecting on the quality of 3D-models printed by this technology were analyzed. Experimental studied for determination of the printing parameter influence (layer thickness, filling percentage, printing velocity) on ultimate strength of specimens made of ABS-plastic were carried out.


Geophysics ◽  
2007 ◽  
Vol 72 (4) ◽  
pp. F197-F209 ◽  
Author(s):  
Anton Ziolkowski ◽  
Bruce A. Hobbs ◽  
David Wright

We describe the acquisition, processing, and inversion of a multitransient electromagnetic (MTEM) single-line survey, conducted in December 2004 over an underground gas storage reservoir in southwestern France. The objective was to find a resistor corresponding to known gas about [Formula: see text] below the survey line. In data acquisition, we deployed a [Formula: see text] inline bipole current source and twenty [Formula: see text] inline potential receivers in various configurations along the [Formula: see text] survey line; we measured the input current step and received voltages simultaneously. Then we deconvolved the received voltages for the measured input current to determine the earth impulse responses. We show how both amplitude and traveltime information contained in the recovered earth impulse responses reveal the lateral location and approximate depth of the resistive reservoir. Integrating the impulse responses yields step responses, from which the asymptotic DC values were estimated and used in rapid 2D dipole-dipole DC resistivity inversion to find the top of the reservoir. A series of collated 1D full-waveform inversions performed on individual common midpoint gathers of the step responses position the top and bottom of a resistor corresponding to known gas in the reservoir and also obtain the transverse resistance. The results imply that the MTEM method can be used as a tool for hydrocarbon exploration and production.


Sign in / Sign up

Export Citation Format

Share Document