scholarly journals Detecting the influence of land use changes on Floods in the Meuse River Basin – the predictive power of a ninety-year rainfall-runoff relation

2006 ◽  
Vol 3 (2) ◽  
pp. 529-559 ◽  
Author(s):  
A. G. Ashagrie ◽  
P. J. M. de Laat ◽  
M. J. M. de Wit ◽  
M. Tu ◽  
S. Uhlenbrook

Abstract. Quantifying how changes in land use affect the hydrological response at the river basin scale is a current challenge in hydrological science. A daily discharge record (1911–2000) of the river Meuse (21 000 km2; Western Europe) has been simulated with a semi-distributed conceptual model (HBV). The model has been calibrated and validated with a data set for the period 1968–1998. In this study the performance of the model for the period prior to 1968 has been analysed. The observed and simulated discharge records are compared in terms of annual average discharge, summer and winter average discharge, annual maximum daily discharge, and annual maximum 10-day average discharge. The results are discussed with reference to land use change (i.e. forest type change) and shortcomings of the available precipitation and discharge records. The general agreement between the observed and simulated discharge records is good (Nash-Sutcliffe efficiency: 0.89–0.93), in particular flood volumes and the highest flood peaks are simulated well but the model has problems with the medium floods (shape and peak value). However, there are some systematic deviations between the observed and simulated discharges during specific periods. The simulation result could somewhat be improved by taking the historical land use into consideration. But the systematic overestimation of the discharge for the period 1933–1968 could not be attributed to observed changes in land use. It is concluded that the overall impact of land use changes in the Meuse basin is too small to be detected given the uncertainties in the available records.

2006 ◽  
Vol 10 (5) ◽  
pp. 691-701 ◽  
Author(s):  
A. G. Ashagrie ◽  
P. J. de Laat ◽  
M. J. de Wit ◽  
M. Tu ◽  
S. Uhlenbrook

Abstract. Quantifying how changes in land use affect the hydrological response at the river basin scale is a current challenge in hydrological science. A daily discharge record (1911–2000) of the river Meuse (21 000 km2; Western Europe) has been simulated with a semi-distributed conceptual model (HBV). The model has been calibrated and validated with a data set for the period 1968–1998. In this study the performance of the model for the period prior to 1968 has been analysed. The observed and simulated discharge records are compared in terms of annual average discharge, summer and winter average discharge, annual maximum daily discharge, and annual maximum 10-day average discharge. The results are discussed with reference to land use change (i.e. forest type change) and shortcomings of the available precipitation and discharge records. The general agreement between the observed and simulated discharge records is good (Nash-Sutcliffe efficiency: 0.89–0.93), in particular flood volumes and the highest flood peaks are simulated well but the model has problems with the medium floods (shape and peak value). However, there are some systematic deviations between the observed and simulated discharges during specific periods. The simulation result could somewhat be improved by taking the historical land use into consideration. But the systematic overestimation of the discharge for the period 1933–1968 could not be attributed to observed changes in land use. It is concluded that the overall impact of land use changes in the Meuse basin is too small to be detected given the uncertainties in the available records.


10.5109/27370 ◽  
2013 ◽  
Vol 58 (2) ◽  
pp. 377-387
Author(s):  
Yanna Xiong ◽  
Guoqiang Wang ◽  
Yanguo Teng ◽  
Kyoichi Otsuki

Hydrology ◽  
2018 ◽  
Vol 5 (4) ◽  
pp. 69 ◽  
Author(s):  
Lawin Emmanuel ◽  
Yèkambèssoun N’Tcha M’Po ◽  
Chabi Biaou ◽  
Kossi Komi ◽  
Rita Hounguè ◽  
...  

This study evaluates the impacts of land use and climate changes on daily discharge in Ouémé river basin at Bétérou outlet. Observed rainfall and temperature over 2002–2008 and land use data of 2003 and 2007 were used. Corrected rainfall and temperature data, under RCP4.5 and RCP8.5 scenarios from regional climate model REMO were considered. Two land use scenarios from RIVERTWIN project were used. The first one, Land Use A (LUA), is characterized by stronger economic development, controlled urbanization, implementation of large-scale irrigation schemes, and 3.2% population growth per year. The other one, Land Use B (LUB), is characterized by a weak national economy, uncontrolled settlement, and farmland development as well as 3.5% population growth per year. Four climate and land use combined scenarios (LUA + RCP4.5, LUA + RCP8.5; LUB + RCP4.5, and LUB + RCP8.5) were used for forcing LISFLOOD hydrological model to estimate future discharges at 2050. As a result, during calibration and validation, the LISFLOOD model showed high ability to reproduce historical flows of Ouémé River at Bétérou outlet with Nash–Sutcliffe efficiencies greater than 90%. Future discharges simulations show general increase for all land use and climate combined scenarios for all time horizons until 2050. The increase is more exacerbated under the combined scenarios using LUB than the ones using LUA. Increase of river discharge varies between 7.1% and 52% compared to the mean of the reference period 2002–2004. These findings highlight growing challenges for water resources managers and planners. Moreover, they emphasize the need to address potential climate and land use changes’ impact on water resources. Then, developing water management plans, strategies to reduce flooding risks must be considered.


Author(s):  
Xin Zhang ◽  
Lin Zhou ◽  
Yuqi Liu

Changes in landscape patterns in a river basin play a crucial role in the change on load of non-point source pollution. The spatial distribution of various land use types affects the transmission of non-point source pollutants on the basis of source-sink theory in landscape ecology. Jiulong River basin in southeast of China was selected as the study area in this paper. Aiming to analyze the correlation between changing landscape patterns and load of non-point source pollution in this area, traditional landscape metrics and the improved location-weighted landscape contrast index based on the minimum hydrological response unit (HRULCI) were applied in this study, in combination with remote sensing and geographic information system (GIS) technique. The results of the landscape metrics showed the enhanced fragmentation extent and the decreasing polymerization degree of the overall landscape in the watershed. High values of HRULCI were concentrated in cultivated land, while low HRULCI values mostly appeared in forestland, indicating that cultivated land substantially enhanced non-point source pollution, while forestland inhibited the pollution process.


2021 ◽  
Author(s):  
Rohit Kumar ◽  
Benidhar Deshmukh ◽  
Kiran Sathunuri

<p>Land degradation is a global concern posing significant threat to sustainable development. One of its major aspects is soil erosion, which is recognised as one of the critical geomorphic processes controlling sediment budget and landscape evolution. Natural rate of soil erosion is exacerbated due to anthropogenic activities that may lead to soil infertility. Therefore, assessment of soil erosion at basin scale is needed to understand its spatial pattern so as to effectively plan for soil conservation. This study focuses on Parbati river basin, a major north flowing cratonic river and a tributary of river Chambal to identify erosion prone areas using RUSLE model. Soil erodibility (K), Rainfall erosivity (R), and Topographic (LS) factors were derived from National Bureau of Soil Survey and Land Use Planning, Nagpur (NBSS-LUP) soil maps, India Meteorological Department (IMD) datasets, and SRTM30m DEM, respectively in GIS environment. The crop management (C) and support practice (P) factors were calculated by assigning appropriate values to Land use /land cover (LULC) classes derived by random forest based supervised classification of Sentinel-2 level-1C satellite remote sensing data in Google Earth Engine platform. High and very high soil erosion were observed in NE and NW parts of the basin, respectively, which may be attributed to the presence of barren land, fallow areas and rugged topography. The result reveals that annual rate of soil loss for the Parbati river basin is ~319 tons/ha/yr (with the mean of 1.2 tons/ha/yr). Lowest rate of soil loss (i.e. ~36 tons/ha/yr with mean of 0.22 tons/ha/yr) has been observed in the open forest class whereas highest rate of soil loss (i.e. ~316 tons/ha/yr with mean of 32.08 tons/ha/yr) have been observed in gullied area class. The study indicates that gullied areas are contributing most to the high soil erosion rate in the basin. Further, the rate of soil loss in the gullied areas is much higher than the permissible value of 4.5–11 tons/ha/yr recognized for India. The study helps in understanding spatial pattern of soil loss in the study area and is therefore useful in identifying and prioritising erosion prone areas so as to plan for their conservation.</p>


Sign in / Sign up

Export Citation Format

Share Document