RUSLE Model based Assessment of Soil Erosion in Parbati River Basin, Central India using Google Earth Engine and GIS

Author(s):  
Rohit Kumar ◽  
Benidhar Deshmukh ◽  
Kiran Sathunuri

<p>Land degradation is a global concern posing significant threat to sustainable development. One of its major aspects is soil erosion, which is recognised as one of the critical geomorphic processes controlling sediment budget and landscape evolution. Natural rate of soil erosion is exacerbated due to anthropogenic activities that may lead to soil infertility. Therefore, assessment of soil erosion at basin scale is needed to understand its spatial pattern so as to effectively plan for soil conservation. This study focuses on Parbati river basin, a major north flowing cratonic river and a tributary of river Chambal to identify erosion prone areas using RUSLE model. Soil erodibility (K), Rainfall erosivity (R), and Topographic (LS) factors were derived from National Bureau of Soil Survey and Land Use Planning, Nagpur (NBSS-LUP) soil maps, India Meteorological Department (IMD) datasets, and SRTM30m DEM, respectively in GIS environment. The crop management (C) and support practice (P) factors were calculated by assigning appropriate values to Land use /land cover (LULC) classes derived by random forest based supervised classification of Sentinel-2 level-1C satellite remote sensing data in Google Earth Engine platform. High and very high soil erosion were observed in NE and NW parts of the basin, respectively, which may be attributed to the presence of barren land, fallow areas and rugged topography. The result reveals that annual rate of soil loss for the Parbati river basin is ~319 tons/ha/yr (with the mean of 1.2 tons/ha/yr). Lowest rate of soil loss (i.e. ~36 tons/ha/yr with mean of 0.22 tons/ha/yr) has been observed in the open forest class whereas highest rate of soil loss (i.e. ~316 tons/ha/yr with mean of 32.08 tons/ha/yr) have been observed in gullied area class. The study indicates that gullied areas are contributing most to the high soil erosion rate in the basin. Further, the rate of soil loss in the gullied areas is much higher than the permissible value of 4.5–11 tons/ha/yr recognized for India. The study helps in understanding spatial pattern of soil loss in the study area and is therefore useful in identifying and prioritising erosion prone areas so as to plan for their conservation.</p>

2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
D. L. D. Panditharathne ◽  
N. S. Abeysingha ◽  
K. G. S. Nirmanee ◽  
Ananda Mallawatantri

Soil erosion is one of the main forms of land degradation. Erosion contributes to loss of agricultural land productivity and ecological and esthetic values of natural environment, and it impairs the production of safe drinking water and hydroenergy production. Thus, assessment of soil erosion and identifying the lands more prone to erosion are vital for erosion management process. Revised Universal Soil Loss Equation (Rusle) model supported by a GIS system was used to assess the spatial variability of erosion occurring at Kalu Ganga river basin in Sri Lanka. Digital Elevation Model (30 × 30 m), twenty years’ rainfall data measured at 11 rain gauge stations across the basin, land use and soil maps, and published literature were used as inputs to the model. The average annual soil loss in Kalu Ganga river basin varied from 0 to 134 t ha−1 year−1 and mean annual soil loss was estimated at 0.63 t ha−1 year−1. Based on erosion estimates, the basin landscape was divided into four different erosion severity classes: very low, low, moderate, and high. About 1.68% of the areas (4714 ha) in the river basin were identified with moderate to high erosion severity (>5 t ha−1 year−1) class which urgently need measures to control soil erosion. Lands with moderate to high soil erosion classes were mostly found in Bulathsinghala, Kuruwita, and Rathnapura divisional secretarial divisions. Use of the erosion severity information coupled with basin wide individual RUSLE parameters can help to design the appropriate land use management practices and improved management based on the observations to minimize soil erosion in the basin.


Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1293 ◽  
Author(s):  
Hao Wang ◽  
Hu Zhao

The Taohe River Basin is the largest tributary and an important water conservation area in the upper reaches of the Yellow River. In order to investigate the status of soil erosion in this region, we conducted a research of soil erosion. In our study, several parameters of the revised universal soil loss equation (RUSLE) model are extracted by using Google Earth Engine. The soil erosion modulus of the Taohe River Basin was calculated based on multi-source data, and the spatio-temporal variation characteristics of the soil erosion intensity were analyzed. The results showed the following: (1) the average soil erosion modulus of the Taohe River Basin in 2000, 2005, 2010, 2015 and 2018 were 1424, 1195, 1129, 1099 and 1124 t·ha−1·year−1, respectively, and the overall downward trend was obvious. (2) The ranges of soil erosion in the Taohe River Basin in 2000, 2005, 2010, 2015 and 2018 are basically the same—mainly with slight erosion—and the soil erosion in the middle and lower reaches was more serious. (3) When dealing with the vegetation cover factor and conservation practice factor in the RUSLE model, Google Earth Engine provided a new approach for soil erosion investigation and monitoring over a large area.


10.5109/27370 ◽  
2013 ◽  
Vol 58 (2) ◽  
pp. 377-387
Author(s):  
Yanna Xiong ◽  
Guoqiang Wang ◽  
Yanguo Teng ◽  
Kyoichi Otsuki

2021 ◽  
Author(s):  
Habtamu Tamiru ◽  
Meseret Wagari

Abstract Background: The quantity of soil loss as a result of soil erosion is dramatically increasing in catchment where land resources management is very weak. The annual dramatic increment of the depletion of very important soil nutrients exposes the residents of this catchment to high expenses of money to use artificial fertilizers to increase the yield. This paper was conducted in Fincha Catchment where the soil is highly vulnerable to erosion, however, where such studies are not undertaken. This study uses Fincha catchment in Abay river basin as the study area to quantify the annual soil loss, where such studies are not undertaken, by implementing Revised Universal Soil Loss Equation (RUSLE) model developed in ArcGIS version 10.4. Results: Digital Elevation Model (12.5 x 12.5), LANDSAT 8 of Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS), Annual Rainfall of 10 stations (2010-2019) and soil maps of the catchment were used as input parameters to generate the significant factors. Rainfall erosivity factor (R), soil erodibility factor (K), cover and management factor (C), slope length and steepness factor (LS) and support practice factor (P) were used as soil loss quantification significant factors. It was found that the quantified average annual soil loss ranges from 0.0 to 76.5 t ha-1 yr-1 was obtained in the catchment. The area coverage of soil erosion severity with 55%, 35% and 10% as low to moderate, high and very high respectively were identified. Conclusion: Finally, it was concluded that having information about the spatial variability of soil loss severity map generated in the RUSLE model has a paramount role to alert land resources managers and all stakeholders in controlling the effects via the implementation of both structural and non-structural mitigations. The results of the RUSLE model can also be further considered along with the catchment for practical soil loss quantification that can help for protection practices.


2020 ◽  
pp. 36-52
Author(s):  
S. Papaiordanidis ◽  
I.Z. Gitas ◽  
T. Katagis

High-quality soils are an important resource affecting the quality of life of human societies, as well as terrestrial ecosystems in general. Thus, soil erosion and soil loss are a serious issue that should be managed, in order to conserve both artificial and natural ecosystems. Predicting soil erosion has been a challenge for many years. Traditional field measurements are accurate, but they cannot be applied to large areas easily because of their high cost in time and resources. The last decade, satellite remote sensing and predictive models have been widely used by scientists to predict soil erosion in large areas with cost-efficient methods and techniques. One of those techniques is the Revised Universal Soil Loss Equation (RUSLE). RUSLE uses satellite imagery, as well as precipitation and soil data from other sources to predict the soil erosion per hectare in tons, in a given instant of time. Data acquisition for these data-demanding methods has always been a problem, especially for scientists working with large and diverse datasets. Newly emerged online technologies like Google Earth Engine (GEE) have given access to petabytes of data on demand, alongside high processing power to process them. In this paper we investigated seasonal spatiotemporal changes of soil erosion with the use of RUSLE implemented within GEE, for Pindos mountain range in Greece. In addition, we estimated the correlation between the seasonal components of RUSLE (precipitation and vegetation) and mean RUSLE values.


Author(s):  
Omar El Aroussi

In Morocco, the spectacular expansion of erosive processes shows increasingly alarming aspects. Due to the considerable costs of detailed ground surveys for studying this phenomenon, remote sensing is an appropriate alternative for analyzing and evaluating the risks of the expansion of soil degradation. According to an FAO study (2001), Erosion threatens 13 million ha of cropland and rangeland in northern Morocco and induces an estimated average water storage capacity loss of 50 million m3 each year through dam silting. The lost water volume could potentially be used to irrigate 5000 to 6000 ha / year. This study analyses soil erosion on the Oued El Malleh catchment, a 34 km2 catchment located in the north of Fez (Morocco). This contribution aims at mapping the spatio-temporal evolution of land use and modelling the erosion and sedimentation processes using the well known RUSLE model. Land use changes were assessed using Landsat-5 TM and Landsat-7 ETM+ images, from the 1987-2011 periods which were validated by field studies. The images were first georeferenced and projected into the Moroccan coordinate system (Merchich North) then processed to evaluate soil loss through a GIS package (Idrisi Andes Software). These static assessments of soil loss were then used in a deposition/sedimentation algorithm to model soil loss propagation to the downstream. The soil loss averages determined by the model vary between 1.09 t/ha/yr as a minimum value for the reforested lands and 169.4 t/ha/yr as a maximum value for the uncultivated lands (badlands). The latter generally correspond to Regosols or low protected soils located on steep slopes. In comparison with RUSLE, the sedimentation model yields lower values of soil losses; only 97.3 t/h/year for the uncultivated lands, and -0.34 t/ha/year in the reforested land, indicating an on-going sedimentation process. By taking into account the temporal variability of erosion and deposition jointly lower values of soil erosion are calculated by the RUSLE model. However, despite this decline, land degradation problems are still important due to the combination of land use and local lithology. The results of this study were used to indentify areas where interventions are needed to limit land degradation processes.


Author(s):  
Habtamu Tamiru ◽  
Meseret Wagari

The quantity of soil loss as a result of soil erosion is dramatically increasing in catchment where land resources management is very weak. In this paper, a RUSLE model-based soil loss quanti-fication technique is presented to estimate the annual soil loss and identify the severity of the erosion in the catchment. This study uses Fincha catchment in Abay river basin as the study area to quantify the annual soil loss by implementing Revised Universal Soil Loss Equation (RUSLE) model developed in ArcGIS version 10.4. Digital Elevation Model (12.5 x 12.5), LANDSAT 8 of Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS), Annual Rainfall of 10 stations and soil maps of the catchment were used as input parameters to generate the significant factors. Rainfall erosivity factor (R), soil erodibility factor (K), cover and management factor (C), slope length and steepness factor (LS) and support practice factor (P) were used as soil loss quantification significant factors. A model builder for the RUSLE model was developed and raster map calcula-tion algebra was applied in ArcGIS version 10.4 to quantify the total annual soil loss. It was found that the quantified average annual soil loss ranges from 0.0 to 76.5 t ha-1 yr-1 was obtained in the catchment. The area coverage of soil erosion severity with 55%, 35% and 10% as low to moderate, high and very high respectively were identified. The information about the spatial variation of soil loss severity map generated in RUSLE model has a paramount role to alert land resources man-agers and all stakeholders in controlling the effects via implementation of both structural and non-structural mitigations. The results of the RUSLE model can also be further considered along with the catchment for practical soil loss quantification that can help for protection practices.


Author(s):  
R. V Byizigiro ◽  
G Rwanyiziri ◽  
M. Mugabowindekwe ◽  
C. Kagoyire ◽  
M. Biryabarema

The problem of soil erosion in Rwanda has been highlighted in previous studies. They have shown that half of the country’s farmland suffers moderate to severe erosion, with the highest soil loss rates found in the steeper and highly rainy northern and western highlands of the country. The purpose of this study was to estimate soil loss in Satinskyi, one of the catchments located in Ngororero District of Western Rwanda. This has been achieved using the Revised Universal Soil Loss Equation (RUSLE) model, which has been implemented in a Geographic Information Systems (GIS) environment. The methods consisted of preparing a set of input factor layers including Slope Length and Steepness (LS) factor, Rainfall Erosivity (R) factor, Soil Erodibility (K) factor, Support Practice (P) factor, and Land Surface Cover Management Factor (C) factor, for the model. The input factors have been integrated for soil loss estimates computation using RUSLE model, and this has enabled to quantitatively assess variations in the mean of the total estimated soil loss per annum in relation to topography and land-use patterns of the studied catchment. The findings showed that the average soil loss in Satinskyi catchment is estimated at 38.4 t/ha/year. It was however found that about 91% of the study area consists of areas with slope angle exceeding 15°, a situation which exposes the land to severe soil loss rates ranging between 31 t/ha/year and 41 t/ha/year. Apart from the steep slope, changes in land use also contribute to high rates of soil loss in the catchment. Keywords: Soil Erosion Estimation, GIS, RUSLE, Satinskyi Catchment, Rwanda


Sign in / Sign up

Export Citation Format

Share Document