scholarly journals A new formulation to compute self-potential signals associated with ground water flow

2007 ◽  
Vol 4 (3) ◽  
pp. 1429-1463 ◽  
Author(s):  
A. Bolève ◽  
A. Revil ◽  
F. Janod ◽  
J. L. Mattiuzzo ◽  
A. Jardani

Abstract. The classical formulation of the coupled hydroelectrical flow in porous media is based on a linear formulation of two coupled constitutive equations for the electrical current density and the seepage velocity of the water phase and obeying Onsager's reciprocity. This formulation shows that the streaming current density is controlled by the gradient of the fluid pressure of the water phase and a streaming current coupling coefficient that depends on the so-called zeta potential. Recently a new formulation has been introduced in which the streaming current density is directly connected to the seepage velocity of the water phase and to the excess of electrical charge per unit pore volume in the porous material. The advantages of this formulation are numerous. First this new formulation is more intuitive not only in terms of constitutive equation for the generalized Ohm's law but also in specifying boundary conditions for the influence of the flow field upon the streaming potential. With the new formulation, the streaming potential coupling coefficient shows a decrease of its magnitude with permeability in agreement with published results. The new formulation is also easily extendable to non-viscous laminar flow problems (high Reynolds number ground water flow in cracks for example) and to unsaturated conditions with applications to the vadose zone. We demonstrate here that this formulation is suitable to model self-potential signals in the field. We investigate infiltration of water from an agricultural ditch, vertical infiltration of water into a sinkhole, and preferential horizontal flow of ground water in a paleochannel. For the three cases reported in the present study, a good match is obtained between the finite element simulations performed with the finite element code Comsol Multiphysics 3.3 and field observations. Finally, this formulation seems also very promising for the inversion of the geometry of ground water flow from the monitoring of self-potential signals.

2007 ◽  
Vol 11 (5) ◽  
pp. 1661-1671 ◽  
Author(s):  
A. Bolève ◽  
A. Revil ◽  
F. Janod ◽  
J. L. Mattiuzzo ◽  
A. Jardani

Abstract. The classical formulation of the coupled hydroelectrical flow in porous media is based on a linear formulation of two coupled constitutive equations for the electrical current density and the seepage velocity of the water phase and obeying Onsager's reciprocity. This formulation shows that the streaming current density is controlled by the gradient of the fluid pressure of the water phase and a streaming current coupling coefficient that depends on the so-called zeta potential. Recently a new formulation has been introduced in which the streaming current density is directly connected to the seepage velocity of the water phase and to the excess of electrical charge per unit pore volume in the porous material. The advantages of this formulation are numerous. First this new formulation is more intuitive not only in terms of establishing a constitutive equation for the generalized Ohm's law but also in specifying boundary conditions for the influence of the flow field upon the streaming potential. With the new formulation, the streaming potential coupling coefficient shows a decrease of its magnitude with permeability in agreement with published results. The new formulation has been extended in the inertial laminar flow regime and to unsaturated conditions with applications to the vadose zone. This formulation is suitable to model self-potential signals in the field. We investigate infiltration of water from an agricultural ditch, vertical infiltration of water into a sinkhole, and preferential horizontal flow of ground water in a paleochannel. For the three cases reported in the present study, a good match is obtained between finite element simulations performed and field observations. Thus, this formulation could be useful for the inverse mapping of the geometry of groundwater flow from self-potential field measurements.


2005 ◽  
Vol 32 (7) ◽  
pp. n/a-n/a ◽  
Author(s):  
A. Revil ◽  
L. Cary ◽  
Q. Fan ◽  
A. Finizola ◽  
F. Trolard

2017 ◽  
Vol 22 (3) ◽  
pp. 235-247 ◽  
Author(s):  
André Revil ◽  
Abdellahi Soueid Ahmed ◽  
Abderrahim Jardani

2011 ◽  
Vol 2 (1) ◽  
pp. 13-17
Author(s):  
I. David ◽  
M. Visescu

Abstract Geothermal energy source is the heat from the Earth, which ranges from the shallow ground (the upper 100 m of the Earth) to the hot water and hot rock which is a few thousand meters beneath the Earth's surface. In both cases the so-called open systems for geothermal energy resource exploitation consist of a groundwater production well to supply heat energy and an injection well to return the cooled water, from the heat pump after the thermal energy transfer, in the underground. In the paper an analytical method for a rapid estimation of the ground water flow direction effect on the coupled production well and injection well system will be proposed. The method will be illustrated with solutions and images for representative flow directions respect to the axis of the production/injection well system.


Sign in / Sign up

Export Citation Format

Share Document