scholarly journals Mapping of the maritime jurisdiction for Arctic Navigation

2019 ◽  
Vol 1 ◽  
pp. 1-1
Author(s):  
Haiyan Liu ◽  
Xiaoping Pang

<p><strong>Abstract.</strong> In recent years, Arctic glaciers have gradually melted due to the global warming, which makes the exploitation of Arctic and its seabed resources possible. Though numerous disagreements and potentials over Arctic maritime jurisdiction still exist, the surround-Arctic nations have agreed the United Nations' Convention on the Law of the Sea to divide the Arctic Ocean into zones that can be regulated and exploited. The IBRU of Durham University has mapped the known claims, agreed boundaries and potential claims of the surround-Arctic nations in the Arctic to clear the maritime jurisdiction in the region. However, different countries may have different requirements within their jurisdictional areas. Clarifying these requirements is essential for Arctic Navigation of investigation ships and merchant ships for their route planning.</p><p>In this paper, based on the map of maritime jurisdiction and boundaries in Arctic region (IBRU), we analysed the international conventions and relevant laws of the surround-Arctic nations to find out the rights and obligations of ships in different zones. The limitations on activities and recommendations on navigation planning are marked for different zones according to different purposes, i.e. science or commerce. The map could not only provide navigational guidance for the activities in the Arctic Ocean, but offer references for the countries not surrounding the Arctic in the formulation of the Arctic strategies.</p>

2011 ◽  
Vol 1 ◽  
pp. 39-47
Author(s):  
Andrew Gibson

This paper will examine Canada’s policy options regarding Canadian sovereignty over the Arctic Ocean, and will recommend a policy of multilateral engagement. Canada claims full sovereignty over the Arctic Archipelago and its surrounding waters, as well as a more limited form of sovereignty in parts of the Arctic Ocean. There is significant strategic, environmental, and economic value to uncontested Canadian control of these waters. However, these claims are not recognized by other states and contravene accepted international rules laid out in the United Nations Convention on the Law of the Sea (UNCLOS). As Canada lacks the infrastructure and military power to effectively assert control of the region, as well as the diplomatic power to make other states recognize Canada’s claim, Canada should abandon its unilateral stance and pursue its claim through existing multilateral options: the UNCLOS and the Arctic Council. 


2017 ◽  
Vol 17 (13) ◽  
pp. 8101-8128 ◽  
Author(s):  
Eyal Freud ◽  
Radovan Krejci ◽  
Peter Tunved ◽  
Richard Leaitch ◽  
Quynh T. Nguyen ◽  
...  

Abstract. The Arctic environment has an amplified response to global climatic change. It is sensitive to human activities that mostly take place elsewhere. For this study, a multi-year set of observed aerosol number size distributions in the diameter range of 10 to 500 nm from five sites around the Arctic Ocean (Alert, Villum Research Station – Station Nord, Zeppelin, Tiksi and Barrow) was assembled and analysed.A cluster analysis of the aerosol number size distributions revealed four distinct distributions. Together with Lagrangian air parcel back-trajectories, they were used to link the observed aerosol number size distributions with a variety of transport regimes. This analysis yields insight into aerosol dynamics, transport and removal processes, on both an intra- and an inter-monthly scale. For instance, the relative occurrence of aerosol number size distributions that indicate new particle formation (NPF) event is near zero during the dark months, increases gradually to  ∼ 40 % from spring to summer, and then collapses in autumn. Also, the likelihood of Arctic haze aerosols is minimal in summer and peaks in April at all sites.The residence time of accumulation-mode particles in the Arctic troposphere is typically long enough to allow tracking them back to their source regions. Air flow that passes at low altitude over central Siberia and western Russia is associated with relatively high concentrations of accumulation-mode particles (Nacc) at all five sites – often above 150 cm−3. There are also indications of air descending into the Arctic boundary layer after transport from lower latitudes.The analysis of the back-trajectories together with the meteorological fields along them indicates that the main driver of the Arctic annual cycle of Nacc, on the larger scale, is when atmospheric transport covers the source regions for these particles in the 10-day period preceding the observations in the Arctic. The scavenging of these particles by precipitation is shown to be important on a regional scale and it is most active in summer. Cloud processing is an additional factor that enhances the Nacc annual cycle.There are some consistent differences between the sites that are beyond the year-to-year variability. They are the result of differences in the proximity to the aerosol source regions and to the Arctic Ocean sea-ice edge, as well as in the exposure to free-tropospheric air and in precipitation patterns – to mention a few. Hence, for most purposes, aerosol observations from a single Arctic site cannot represent the entire Arctic region. Therefore, the results presented here are a powerful observational benchmark for evaluation of detailed climate and air chemistry modelling studies of aerosols throughout the vast Arctic region.


2017 ◽  
Author(s):  
Eyal Freud ◽  
Radovan Krejci ◽  
Peter Tunved ◽  
Richard Leaitch ◽  
Quynh T. Nguyen ◽  
...  

Abstract. The Arctic environment has an amplified response to global climatic change. It is sensitive to human activities that mostly take place elsewhere. For this study, a multi-year set of observed aerosol number size distributions in the diameter range of 10 to 500 nm from five sites around the Arctic Ocean (Alert, Villum Research Station – Station Nord, Zeppelin, Tiksi and Barrow) was assembled and analysed. A cluster analysis of the aerosol number size distributions, revealed four distinct distributions. Together with Lagrangian air parcel back-trajectories, they were used to link the observed aerosol number size distributions with a variety of transport regimes. This analysis yields insight into aerosol dynamics, transport and removal processes, on both an intra- and inter-monthly scales. For instance, the relative occurrence of aerosol number size distributions that indicate new particle formation (NPF) event is near zero during the dark months, and increases gradually to ~ 40 % from spring to summer, and then collapses in autumn. Also, the likelihood of Arctic Haze aerosols is minimal in summer and peaks in April at all sites. The residence time of accumulation-mode particles in the Arctic troposphere is typically long enough to allow tracking them back to their source regions. Air flow that passes at low altitude over central Siberia and Western Russia is associated with relatively high concentrations of accumulation-mode particles (Nacc) at all five sites – often above 150 cm−3. There are also indications of air descending into the Arctic boundary layer after transport from lower latitudes. The analysis of the back-trajectories together with the meteorological fields along them indicates that the main driver of the Arctic annual cycle of Nacc, on the larger scale, is when atmospheric transport covers the source regions for these particles in the 10-day period preceding the observations in the Arctic. The scavenging of these particles by precipitation is shown to be important on a regional scale and it is most active in summer. Cloud processing is an additional factor that enhances the Nacc annual cycle. There are some consistent differences between the sites that are beyond the year-to-year variability. They are the result of differences in the proximity to the aerosol source regions and to the Arctic Ocean sea-ice edge, as well as in the exposure to free tropospheric air and in precipitation patterns – to mention a few. Hence, for most purposes, aerosol observations from a single Arctic site cannot represent the entire Arctic region. Therefore, the results presented here are a powerful observational benchmark for evaluation of detailed climate and air chemistry modelling studies of aerosols throughout the vast Arctic region.


Author(s):  
M. Slipenchuk

In recent decades Arctic attracts the attention of a growing number of states. For effective international cooperation it is necessary to undertake several important steps, including legal work and adoption of documents regulating the statuses and activities of state in Arctic region. It is also needed to undertake a delimitation of sea spaces in the Arctic Ocean, to determine the measures for providing environmental safety in the regions, to reach international agreement on the status of the Northern Sea Route and Northwest Passage, to establish an innovation hub clusters and several others.


Author(s):  
Simon Reich ◽  
Peter Dombrowski

This chapter examines the shift from a traditional strategy of isolationism to an embryonic variant of a strategy of retrenchment (called “restraint”) in the Arctic region. The Arctic is an area where environmental and economic (natural resources) concerns dominate the US agenda. Security considerations such as contested sovereignty – and the question of what proponents of a strategy of restraint call “chokepoints” – are generally neglected. The chapter therefore begins with a vignette about the Russians planting a titanium flag on the bed of the Arctic Ocean as the segue to a broader discussion of the strategic implications of the ice melt. We focus on the emergence of a new “commons;’” the development of new chokepoints that American strategists currently debate; and the lack of desire (and capacity) of the US Navy to take on this new role.


Sign in / Sign up

Export Citation Format

Share Document