scholarly journals ESTIMATION OF BIOMASS AND CARBON POOL IN BARKOT FOREST RANGE, UK USING GEOSPATIAL TOOLS

Author(s):  
P. Attri ◽  
S. P. S. Kushwaha

<p><strong>Abstract.</strong> The forest ecosystem is an important carbon sink and source containing majority of the aboveground terrestrial organic carbon. Carbon management in forests is the global concern to mitigate the increased concentration of green house gases in the atmosphere. The present study estimated vegetation carbon pool and biophysical spectral modelling to correlate biomass with reflectance/ derivatives in Barkot Forest Range, Uttarakhand. The study was carried out using Cartosat-1, IRS-P6 LISS-IV MX, IRS LISS-III, Landsat 7 ETM satellite data and ground data collected from stratified random sampling. Forest type and forest crown density was mapped using resolution merged Cartosat-1 and LISS-IV imagery. Growing stock, biomass and carbon was calculated for the individual sample plots using inventory-based biomass assessment technique. Field-inventoried data was correlated with the surface reflectance and derivatives of it. Among the four vegetation types, viz. <i>Shorea robusta</i>, <i>S. robusta</i> mixed, <i>S. robusta Tectona grandis</i> mixed, <i>T. grandis</i> plantation, mixed plantation, Grassland and Agriculture/<span class="thinspace"></span>orchard, the <i>S.robusta</i> was found to be the dominant vegetation in the area, covering 55.86<span class="thinspace"></span>km<sup>2</sup> of the total area. The study revealed that the <i>S.robusta</i> with high density had the highest aboveground biomass (AGB) (t/ha) was found in <i>S.robusta</i> &amp;gt;<span class="thinspace"></span>70% (530<span class="thinspace"></span>t<span class="thinspace"></span>ha<sup>&amp;minus;1</sup>), followed by <i>S.robusta</i> 40&amp;ndash;70% (486<span class="thinspace"></span>t<span class="thinspace"></span>ha<sup>&amp;minus;1</sup>) and minimum was found in mixed plantation &amp;lt;<span class="thinspace"></span>10% (101<span class="thinspace"></span><span class="thinspace"></span>ha<sup>&amp;minus;1</sup>). The general trend showed the decrease in AGB with decrease of forest density in each forest type category. The average AGB of <i>S. robusta T. grandis</i> forest was found (308<span class="thinspace"></span>t<span class="thinspace"></span>ha<sup>&amp;minus;1</sup>&amp;ndash;458<span class="thinspace"></span>t<span class="thinspace"></span>ha<sup>&amp;minus;1</sup>) due to the dominancy of <i>S. robusta</i> trees. The study highlighted the invaluable role of geospatial technology and field inventory for growing stock, biomass and carbon assessment.</p>

2015 ◽  
Vol 1 (1) ◽  
pp. 52-63
Author(s):  
P. Rama Chandra Prasad ◽  
P. Mamtha Lakshmi

AbstractThe current study evaluates the growing stock, biomass and carbon content of Andhra Pradesh state’s forest (India) along with its current status of forest degradation and loss. For this purpose, the study used the growing stock data collected by state forest department in 2010 for the calculation of biomass and carbon storage using the standard conversion and expansion factors given by IPCC. The analysis shows low biomass and carbon values for the state’s forest in comparison to the mean values recorded in different studies made for Andhra Pradesh. It is also observed to be lower when compared with the average carbon and biomass for Indian forests. Overall, the analysis showed degradation and loss of forest in the state, coupled with reduction in biomass and carbon sink.


2021 ◽  
Author(s):  
Razia Sultana ◽  
ASM Saifullah ◽  
Rahat Khan Khan ◽  
Mir Talas Mahammad Diganta

Abstract The litters in the forest floor are the principal contributor for regulating the cycling of necessary elements, primary productivity and maintain soil fertility within the forest ecosystems. Therefore, this study was conducted in a deciduous forest of Bangladesh to ascertain the leaf-litter production and decomposition along with elemental dynamics (K, Ca, Mn, Fe, Co and Zn). Leaf-litter samples from five deciduous plant species and soil samples were collected from the Madhupur Sal Forest for about six months (July-December) in 2018. Production of leaf-litter during the dry season (December) was found in an order of Shorea robusta>Dipterocarpus indicus>Terminalia bellirica>Tectona grandis>Grewia microcos. The decomposition rates were higher for the long sampling period (90 days) followed by the intermediate (60 days)> short(30 days) sampling period. The nutrient release pattern from the leaf-litter was similar (Ca>K>Mn>Fe>Zn>Co) for all plant species except for Terminalia bellirica and Tectona grandis. The Pearson correlation coefficients showed a significant relationship between K and Fe (r=0.54; p<0.05), Ca and Co (r=0.59; p<0.01), Fe and Co (r=0.97; p<0.05) in leaf-litters. Analysis of variance (ANOVA) revealed significant variation in the litter production, decomposition and nutrient content (except Zn; p>0.05) among the different plant species (p<0.05). There revealed a significant dynamic of necessary elements from soil to trees and vice-versa.


2014 ◽  
Vol 37 (4) ◽  
pp. 371-377
Author(s):  
Laxmi Rawat ◽  
Pramod Kumar ◽  
Nishita Giri

The present study was conducted in Shorea robusta (sal), Pinus roxburghii (Chir pine), Tectona grandis (Teak) and Ailanthus excelsa (Ardu) plantations of different ages at different sites in Uttarakhand. Biomass was calculated on the basis of complete tree harvesting method (stratified mean tree technique method). Biomass Expansion Factor (BEF) and root-to-shoot ratio (R) of all these 4 tree species have been calculated and presented in this paper. Sample trees of S. robusta were of 45, 53 and 60 years of age. BEF for all these 3 age series were assessed as 1.3 at 45 years, 1.4 at 53 years and 1.2 at 60 years of age. Similarly, R values were assessed as 0.27, 0.28 and 0.26, respectively, in these 3 age series. BEF and R values assessed for T. grandis (28 years age) as 1.46 and 0.21; and for A. excelsa (39 years age) as 1.23 and 0.23, respectively. BEF for P. roxburghii trees calculated as 2.3 for 13 years age, 1.75 for 20 years, 1.71 for 22 years, 1.5 for 33 years and 1.46 for trees of 45 years of age. Similarly, R values were 0.2 for 13 years, 0.21 for 20 years, 0.12 for 22 years, 0.13 for 33 years and 0.15 for 45 years of age. P. roxburghii sample trees have shown decreasing order of BEF with increasing age, whereas S. robusta has not shown such trend along the chronosequence.


1998 ◽  
Vol 15 (4) ◽  
pp. 216-221 ◽  
Author(s):  
Thomas L. Schmidt ◽  
Mark H. Hansen

Abstract Differences between grazed and ungrazed forestlands in Kansas were investigated based on a statewide sample of all forestlands. Grazing forestlands was found to have a significant relationship to the quality and quantity of trees on forestlands, as seen in lower levels of total volume and growing-stock volume when compared to ungrazed forestlands. In addition, grazed forestlands showed lower average basal areas, younger average stand ages, lower potential productivities, and increased percentages of bare ground. Compared to forestlands without grazing, forestlands with grazing had higher levels of eastern redcedar (Juniperus virginiana L.) seedling regeneration and lower levels of preferred hardwood species regeneration in several forest type groups. Land managers can use these results in their decision-making process concerning whether to graze their deciduous forests. North. J. Appl. For. 15(4):216-221.


2008 ◽  
Vol 19 (3) ◽  
pp. 204-208 ◽  
Author(s):  
Vinod Prasad Khanduri ◽  
Lalnundanga ◽  
J. Vanlalremkimi

2021 ◽  
Vol 14 (10) ◽  
pp. 6071-6112
Author(s):  
Mats Lindeskog ◽  
Benjamin Smith ◽  
Fredrik Lagergren ◽  
Ekaterina Sycheva ◽  
Andrej Ficko ◽  
...  

Abstract. Global forests are the main component of the land carbon sink, which acts as a partial buffer to CO2 emissions into the atmosphere. Dynamic vegetation models offer an approach to projecting the development of forest carbon sink capacity in a future climate. Forest management capabilities are important to include in dynamic vegetation models to account for the effects of age and species structure and wood harvest on carbon stocks and carbon storage potential. This article describes the implementation of a forest management module containing even-age and clear-cut and uneven-age and continuous-cover management alternatives in the dynamic vegetation model LPJ-GUESS. Different age and species structure initialisation strategies and harvest alternatives are introduced. The model is applied at stand and European scales. Different management alternatives are applied in simulations of European beech (Fagus sylvaticus) and Norway spruce (Picea abies) even-aged monoculture stands in central Europe and evaluated against above-ground standing stem volume and harvested volume data from long-term experimental plots. At the European scale, an automated thinning and clear-cut strategy is applied. Modelled carbon stocks and fluxes are evaluated against reported data at the continent and country levels. Including wood harvest in regrowth forests increases the simulated total European carbon sink by 32 % in 1991–2015 and improves the fit to the reported European carbon sink, growing stock, and net annual increment (NAI). Growing stock (156 m3 ha−1) and NAI (5.4 m3 ha1 yr1) densities in 2010 are close to reported values, while the carbon sink density in 2000–2007 (0.085 kg C m−2 yr1) equates to 63 % of reported values, most likely reflecting uncertainties in carbon fluxes from soil given the unaccounted for forest land-use history in the simulations. The fit of modelled and reported values for individual European countries varies, but NAI is generally closer to reported values when including wood harvest in simulations.


Author(s):  
K. M. Kim

Traditional field methods for measuring tree heights are often too costly and time consuming. An alternative remote sensing approach is to measure tree heights from digital stereo photographs which is more practical for forest managers and less expensive than LiDAR or synthetic aperture radar. This work proposes an estimation of stand height and forest volume(m<sup>3</sup>/ha) using normalized digital surface model (nDSM) from high resolution stereo photography (25cm resolution) and forest type map. The study area was located in Mt. Maehwa model forest in Hong Chun-Gun, South Korea. The forest type map has four attributes such as major species, age class, DBH class and crown density class by stand. Overlapping aerial photos were taken in September 2013 and digital surface model (DSM) was created by photogrammetric methods(aerial triangulation, digital image matching). Then, digital terrain model (DTM) was created by filtering DSM and subtracted DTM from DSM pixel by pixel, resulting in nDSM which represents object heights (buildings, trees, etc.). Two independent variables from nDSM were used to estimate forest stand volume: crown density (%) and stand height (m). First, crown density was calculated using canopy segmentation method considering live crown ratio. Next, stand height was produced by averaging individual tree heights in a stand using Esri’s ArcGIS and the USDA Forest Service’s FUSION software. Finally, stand volume was estimated and mapped using aerial photo stand volume equations by species which have two independent variables, crown density and stand height. South Korea has a historical imagery archive which can show forest change in 40 years of successful forest rehabilitation. For a future study, forest volume change map (1970s&ndash;present) will be produced using this stand volume estimation method and a historical imagery archive.


Land ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 435
Author(s):  
Prakash Rai ◽  
Vineeta ◽  
Gopal Shukla ◽  
Abha Manohar K ◽  
Jahangeer A Bhat ◽  
...  

In recent decades, carbon (C) management is an important point on the agenda to identify the best viable mitigation strategies for its reduction. The study was conducted at Jaldapara National Park located in the Eastern Himalayan region of India. The study quantified litter production, decomposition, periodic nutrient release, soil fertility status, and soil organic carbon (SOC) of five major forest stands i.e., Tectona grandis (TGDS), Shorea robusta (SRDS), Michelia champaca (MCDS), Lagerstroemia parviflora (LPDS) and miscellaneous stand (MS). A stratified random nested quadrate method was adopted for sample collection. Results reveal that the greatest amount of litter production and decomposition was under MCDS followed by MS, LPDS, SRDS, and the smallest under TGDS. The material annual turnover through litter decomposition in all the stands varies between 96.46% and 99.34%. The content and amount of the available nutrients in litter varied significantly among the stands. Moreover, release of these nutrients was nearly equal to the amount available in the initial litter mass. In general, the magnitude of the total nutrient return was in the same order as the total litter fall and the nutrient availability was more closely related to litter nutrient content and soil organic carbon. The range of pH (4.86–5.16), EC (0.34–0.50), soil moisture (27.01–31.03) and available primary nutrients (N: (0.21–0.26 Mg/ha), P: (0.09–0.12 Mg/ha), K: (0.13–0.14 Mg/ha)) also varied significantly among the stands. Significant positive correlations were observed between SOC, N and K. Both the fertility indices exhibited no definite pattern in the stands but a significant correlation between the two indicates the healthy soil fertility status of the stands. SOC varies significantly under different forest stands, but the greatest content was found under MS. The estimated SOC ranges between 75.9 and 107.7 Mg ha−1 up to 60 cm and is reported to be below the Indian average of 182.94 Mg ha−1. The present study strongly recommends that Tectona grandis, Shorea robusta, Michelia champaca, and Lagerstroemia parviflora should be the important commercial timbers of the Eastern Himalayan region because they may help further to increase the C sink in agricultural and degraded landscapes.


1986 ◽  
Vol 13 (4) ◽  
pp. 299-309 ◽  
Author(s):  
A.K. Tiwari ◽  
J.S. Mehta ◽  
O.P. Goel ◽  
J.S. Singh

Black-and-white aerial photographs were used to map the lithology, land-use/forest types, and landslide zones (namely old, active, or potential) in a part of Central Himalaya. The landslide and land-use/forest type maps were simultaneously studied, and the frequency distribution of the landslide zones in different land-uses and forest types was estimated. The correlation between the maps indicated the following: In old landslide-affected sites, agriculture was the predominant land-use, followed by Pinus roxburghii forest (≤ 40% crown cover), scrub vegetation, and wasteland (including grassland). The presence of other forests (e.g. forests dominated by climax species such as Shorea robusta at low elevations and Quercus spp. at higher elevations) indicates a high potentiality of recovery of the ecosystems involved, provided biotic (especially anthropic) factors are not too intensive.The active and potential landslide zones were concentrated along geologically active planes, namely thrusts and faults, and/or in the vicinity of toe-erosion of hill-slopes. These two were dominated by P.roxburghii forest (≤ 40% crown cover). The broadleaf forests showed minimal signs of active and potential landslides, perhaps because of their multistratal character which is conducive to minimizing soil-loss compared with the mostly single-storeyed Chir Pine forest. It is, therefore, suggested that the sites should be maintained under a multistratal broadleaf canopy to conserve the soil. Where, however, the Chir Pine forest is already developed, appropriate silvicultural measures may be taken to increase its crown cover to more than 40%.


Sign in / Sign up

Export Citation Format

Share Document