scholarly journals RELATIVE ORIENTATION AND MODIFIED PIECEWISE EPIPOLAR RESAMPLING FOR HIGH RESOLUTION SATELLITE IMAGES

Author(s):  
K. Gong ◽  
D. Fritsch

High resolution, optical satellite sensors are boosted to a new era in the last few years, because satellite stereo images at half meter or even 30cm resolution are available. Nowadays, high resolution satellite image data have been commonly used for Digital Surface Model (DSM) generation and 3D reconstruction. It is common that the Rational Polynomial Coefficients (RPCs) provided by the vendors have rough precision and there is no ground control information available to refine the RPCs. Therefore, we present two relative orientation methods by using corresponding image points only: the first method will use quasi ground control information, which is generated from the corresponding points and rough RPCs, for the bias-compensation model; the second method will estimate the relative pointing errors on the matching image and remove this error by an affine model. Both methods do not need ground control information and are applied for the entire image. To get very dense point clouds, the Semi-Global Matching (SGM) method is an efficient tool. However, before accomplishing the matching process the epipolar constraints are required. In most conditions, satellite images have very large dimensions, contrary to the epipolar geometry generation and image resampling, which is usually carried out in small tiles. This paper also presents a modified piecewise epipolar resampling method for the entire image without tiling. The quality of the proposed relative orientation and epipolar resampling method are evaluated, and finally sub-pixel accuracy has been achieved in our work.

Author(s):  
Y. Han ◽  
S. Wang ◽  
D. Gong ◽  
Y. Wang ◽  
Y. Wang ◽  
...  

Abstract. Data from the optical satellite imaging sensors running 24/7, is collecting in embarrassing abundance nowadays. Besides more suitable for large-scale mapping, multi-view high-resolution satellite images (HRSI) are cheaper when comparing to Light Detection And Ranging (LiDAR) data and aerial remotely sensed images, which are more accessible sources for digital surface modelling and updating. Digital Surface Model (DSM) generation is one of the most critical steps for mapping, 3D modelling, and semantic interpretation. Computing DSM from this dataset is relatively new, and several solutions exist in the market, both commercial and open-source solutions, the performances of these solutions have not yet been comprehensively analyzed. Although some works and challenges have focused on the DSM generation pipeline and the geometric accuracy of the generated DSM, the evaluations, however, do not consider the latest solutions as the fast development in this domain. In this work, we discussed the pipeline of the considered both commercial and opensource solutions, assessed the accuracy of the multi-view satellite image-based DSMs generation methods with LiDAR-derived DSM as the ground truth. Three solutions, including Satellite Stereo Pipeline (S2P), PCI Geomatica, and Agisoft Metashape, are evaluated on a WorldView-3 multi-view satellite dataset both quantitatively and qualitatively with the LiDAR ground truth. Our comparison and findings are presented in the experimental section.


Author(s):  
Warinthorn Kiadtikornthaweeyot ◽  
Adrian R. L. Tatnall

High resolution satellite imaging is considered as the outstanding applicant to extract the Earth’s surface information. Extraction of a feature of an image is very difficult due to having to find the appropriate image segmentation techniques and combine different methods to detect the Region of Interest (ROI) most effectively. This paper proposes techniques to classify objects in the satellite image by using image processing methods on high-resolution satellite images. The systems to identify the ROI focus on forests, urban and agriculture areas. The proposed system is based on histograms of the image to classify objects using thresholding. The thresholding is performed by considering the behaviour of the histogram mapping to a particular region in the satellite image. The proposed model is based on histogram segmentation and morphology techniques. There are five main steps supporting each other; Histogram classification, Histogram segmentation, Morphological dilation, Morphological fill image area and holes and ROI management. The methods to detect the ROI of the satellite images based on histogram classification have been studied, implemented and tested. The algorithm is be able to detect the area of forests, urban and agriculture separately. The image segmentation methods can detect the ROI and reduce the size of the original image by discarding the unnecessary parts.


2022 ◽  
Vol 2022 ◽  
pp. 1-9
Author(s):  
Ruizhe Wang ◽  
Wang Xiao

Since the traditional adaptive enhancement algorithm of high-resolution satellite images has the problems of poor enhancement effect and long enhancement time, an adaptive enhancement algorithm of high-resolution satellite images based on feature fusion is proposed. The noise removal and quality enhancement areas of high-resolution satellite images are determined by collecting a priori information. On this basis, the histogram is used to equalize the high-resolution satellite images, and the local texture features of the images are extracted in combination with the local variance theory. According to the extracted features, the illumination components are estimated by Gaussian low-pass filtering. The illumination components are fused to complete the adaptive enhancement of high-resolution satellite images. Simulation results show that the proposed algorithm has a better adaptive enhancement effect, higher image definition, and shorter enhancement time.


In the current era, content based image retrieval based on pattern recognition and classification using machine learning paradigm is an innovative way. In order to retrieve high resolution satellite images Support Vector Machine (SVM) a machine learning paradigm is helpful for learning process and for pattern recognition and classification; ensemble methods give better machine learning results. In this paper, SVM based on random subspace and boosting ensemble learning is proposed for very high resolution satellite image retrieval. The learned SVM ensemble model is used to identify the images that most similar informative for active learning. A bias-weighting system is developed to direct the ensemble model to pay more attention on the positive examples than the negative ones. The UCMerced land use satellite image dataset is used for experimental work. Accuracy and error rate are found to be precise. The tentative effects illustrate that the proposed model derived enhanced retrieval accurateness at the optimum level as well as significantly more effective than existing approaches. The proposed method can diminish the gap dimensionality and conquer the difficulty. The comparisons are evaluated by using precision and recall measurements. Comparative analysis observed that the retrieval time for a particular image have been reduced and the precision is increased. The primary aim of this paper is to represent the significance of ensemble learning with support vector machine in efficient retrieval of image.


Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 2970
Author(s):  
Ahmed I. Shahin ◽  
Sultan Almotairi

Recently, remote sensing satellite image analysis has received significant attention from geo-information scientists. However, the current geo-information systems lack automatic detection of several building characteristics inside the high-resolution satellite images. The accurate extraction of buildings characteristics helps the decision-makers to optimize urban planning and achieve better decisions. Furthermore, Building orientation angle is a very critical parameter in the accuracy of automated building detection algorithms. However, the traditional computer vision techniques lack accuracy, scalability, and robustness for building orientation angle detection. This paper proposes two different approaches to deep building orientation angle estimation in the high-resolution satellite image. Firstly, we propose a transfer deep learning approach for our estimation task. Secondly, we propose a novel optimized DCRN network consisting of pre-processing, scaled gradient layer, deep convolutional units, dropout layers, and regression end layer. The early proposed gradient layer helps the DCRN network to extract more helpful information and increase its performance. We have collected a building benchmark dataset that consists of building images in Riyadh city. The images used in the experiments are 15,190 buildings images. In our experiments, we have compared our proposed approaches and the other approaches in the literature. The proposed system has achieved the lowest root mean square error (RMSE) value of 1.24, the lowest mean absolute error (MAE) of 0.16, and the highest adjusted R-squared value of 0.99 using the RMS optimizer. The cost of processing time of our proposed DCRN architecture is 0.0113 ± 0.0141 s. Our proposed approach has proven its stability with the input building image contrast variation for all orientation angles. Our experimental results are promising, and it is suggested to be utilized in other building characteristics estimation tasks in high-resolution satellite images.


2019 ◽  
Vol 135 ◽  
pp. 01064
Author(s):  
Vladimir Khryaschev ◽  
Leonid Ivanovsky

The goal of our research was to develop methods based on convolutional neural networks for automatically extracting the locations of buildings from high-resolution aerial images. To analyze the quality of developed deep learning algorithms, there was used Sorensen-Dice coefficient of similarity which compares results of algorithms with real masks. These masks were generated automatically from json files and sliced on smaller parts together with respective aerial photos before the training of developed convolutional neural networks. This approach allows us to cope with the problem of segmentation for high-resolution satellite images. All in all we show how deep neural networks implemented and launched on modern GPUs of high-performance supercomputer NVIDIA DGX-1 can be used to efficiently learn and detect needed objects. The problem of building detection on satellite images can be put into practice for urban planning, building control of some municipal objects, search of the best locations for future outlets etc.


Author(s):  
Y. Wang ◽  
D. Gong ◽  
H. Hu ◽  
S. Wang ◽  
Y. Han ◽  
...  

Abstract. Large-scale Digital Surface Model (DSM) generated with high-resolution satellite images (HRSI) are comparable, cheaper, and more accessible when comparing to Light Detection and Ranging (LiDAR) data and aerial remotely sensed images. Several photogrammetric commercial/open-source software packages are being developed for satellite image-based 3D reconstruction, in which, most of them adopt a modified version of Semi-Global Matching (SGM) algorithm for dense image matching. With the continuous development of matching cost computation methods, the existing methods can be divided into classical (low-level) and learning-based algorithms (non-end-to-end learning and end-to-end learning methods). On Middlebury and KITTI datasets, learning-based algorithms has shown their superiority compared to SGM derived methods. In this context, we assume that matching cost is the key factor of DIM. This paper reviews and evaluates Census Transform, and MC-CNN on a WorldView-3 typical city scene satellite stereo images on the premise that the overall SGM framework remains unchanged, providing a preliminary comparison for academic and industrial. We first compute the cost valume of these two methods, obtains the final DSM after semi-global optimization, and compares their gemetric accuracy with the corresponding LiDAR derived ground truth. We presented our comparison and findings in the experimental section.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Hui Yi ◽  
Xiangning Chen ◽  
Decheng Wang ◽  
Shuhan Du ◽  
Bijie Xu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document