scholarly journals TERRESTRIAL LASER SCANNER AND FAST CHARACTERIZATION OF SUPERFICIAL LESIONS IN ARCHITECTURAL DIAGNOSIS

Author(s):  
A. Costa-Jover ◽  
S. Coll-Pla ◽  
J. Queral Llaberia ◽  
D. Moreno García ◽  
A. Gas Llatge

<p><strong>Abstract.</strong> The development of massive data captures techniques (MDC) in recent years, such as the Terrestrial Laser Scanner (TLS), raises the possibility of developing new assessment procedures for architectural heritage. The 3D models that it is able to obtain is a great potential tool, both for conservation purposes and for historical and architectural studies. The paper proposes a simple, non-invasive methodology for the assessment of masonry vaults from point clouds which makes it possible to obtain relevant data about the formal anomalies. The methodology is tested in Tortosa’s Gothic Cathedral’s vaults, where the geometrical differences between vaults, a priori equal, are identified and related with the partially known construction phases. The procedure can be easily used on any other vaulted construction of any kind, but is especially useful to deal with the complex geometry of Gothic masonry vaults.</p>

Author(s):  
A. Costa-Jover ◽  
J. Lluis i Ginovart ◽  
S. Coll-Pla ◽  
M. López Piquer ◽  
A. Samper-Sosa ◽  
...  

The development of massive data captures techniques (MDC) in recent years, such as the Terrestrial laser Scanner (TLS), raises the possibility of developing new assessment procedures for architectural heritage. The 3D models that it is able to obtain is a great potential tool, both for conservation purposes and for historical and architectural studies. The paper proposes a simple, non-invasive methodology for the assessment of masonry vaults from point clouds which makes it possible to obtain relevant data about the formal anomalies. The methodology is tested in Tortosa’s Gothic Cathedral’s vaults, where the geometrical differences between vaults, a priori equal, are identified and related with the partially known construction phases. The procedure can be easily used on any other vaulted construction of any kind, but is especially useful to deal with the complex geometry of Gothic masonry vaults.


Author(s):  
K. Kawashima ◽  
S. Yamanishi ◽  
S. Kanai ◽  
H. Date

Renovation of plant equipment of petroleum refineries or chemical factories have recently been frequent, and the demand for 3D asbuilt modelling of piping systems is increasing rapidly. Terrestrial laser scanners are used very often in the measurement for as-built modelling. However, the tangled structures of the piping systems results in complex occluded areas, and these areas must be captured from different scanner positions. For efficient and exhaustive measurement of the piping system, the scanner should be placed at optimum positions where the occluded parts of the piping system are captured as much as possible in less scans. However, this "nextbest" scanner positions are usually determined by experienced operators, and there is no guarantee that these positions fulfil the optimum condition. Therefore, this paper proposes a computer-aided method of the optimal sequential view planning for object recognition in plant piping systems using a terrestrial laser scanner. In the method, a sequence of next-best positions of a terrestrial laser scanner specialized for as-built modelling of piping systems can be found without any a priori information of piping objects. Different from the conventional approaches for the next-best-view (NBV) problem, in the proposed method, piping objects in the measured point clouds are recognized right after an every scan, local occluded spaces occupied by the unseen piping systems are then estimated, and the best scanner position can be found so as to minimize these local occluded spaces. The simulation results show that our proposed method outperforms a conventional approach in recognition accuracy, efficiency and computational time.


2021 ◽  
Vol 13 (13) ◽  
pp. 2494
Author(s):  
Gaël Kermarrec ◽  
Niklas Schild ◽  
Jan Hartmann

T-splines have recently been introduced to represent objects of arbitrary shapes using a smaller number of control points than the conventional non-uniform rational B-splines (NURBS) or B-spline representatizons in computer-aided design, computer graphics and reverse engineering. They are flexible in representing complex surface shapes and economic in terms of parameters as they enable local refinement. This property is a great advantage when dense, scattered and noisy point clouds are approximated using least squares fitting, such as those from a terrestrial laser scanner (TLS). Unfortunately, when it comes to assessing the goodness of fit of the surface approximation with a real dataset, only a noisy point cloud can be approximated: (i) a low root mean squared error (RMSE) can be linked with an overfitting, i.e., a fitting of the noise, and should be correspondingly avoided, and (ii) a high RMSE is synonymous with a lack of details. To address the challenge of judging the approximation, the reference surface should be entirely known: this can be solved by printing a mathematically defined T-splines reference surface in three dimensions (3D) and modeling the artefacts induced by the 3D printing. Once scanned under different configurations, it is possible to assess the goodness of fit of the approximation for a noisy and potentially gappy point cloud and compare it with the traditional but less flexible NURBS. The advantages of T-splines local refinement open the door for further applications within a geodetic context such as rigorous statistical testing of deformation. Two different scans from a slightly deformed object were approximated; we found that more than 40% of the computational time could be saved without affecting the goodness of fit of the surface approximation by using the same mesh for the two epochs.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 201
Author(s):  
Michael Bekele Maru ◽  
Donghwan Lee ◽  
Kassahun Demissie Tola ◽  
Seunghee Park

Modeling a structure in the virtual world using three-dimensional (3D) information enhances our understanding, while also aiding in the visualization, of how a structure reacts to any disturbance. Generally, 3D point clouds are used for determining structural behavioral changes. Light detection and ranging (LiDAR) is one of the crucial ways by which a 3D point cloud dataset can be generated. Additionally, 3D cameras are commonly used to develop a point cloud containing many points on the external surface of an object around it. The main objective of this study was to compare the performance of optical sensors, namely a depth camera (DC) and terrestrial laser scanner (TLS) in estimating structural deflection. We also utilized bilateral filtering techniques, which are commonly used in image processing, on the point cloud data for enhancing their accuracy and increasing the application prospects of these sensors in structure health monitoring. The results from these sensors were validated by comparing them with the outputs from a linear variable differential transformer sensor, which was mounted on the beam during an indoor experiment. The results showed that the datasets obtained from both the sensors were acceptable for nominal deflections of 3 mm and above because the error range was less than ±10%. However, the result obtained from the TLS were better than those obtained from the DC.


Author(s):  
Jovana Radović

Within the last years terrestrial and airborne laser scanning has become a powerful technique for fast and efficient three-dimensional data acquisition of different kinds of objects. Airborne laser system (LiDAR) collects accurate georeferenced data of extremely large areas very quickly while the terrestrial laser scanner produces dense and geometrically accurate data. The combination of these two segments of laser scanning provides different areas of application. One of the applications is in the process of reconstruction of objects. Objects recorded with laser scanning technology and transferred into the final model represent the basis for building an object as it was original. In this paper, there will be shown two case studies based on usage of airborne and terrestrial laser scanning and processing of the data collected by them.


2019 ◽  
Vol 154 ◽  
pp. 59-69 ◽  
Author(s):  
D.D. Lichti ◽  
C.L. Glennie ◽  
K. Al-Durgham ◽  
A. Jahraus ◽  
J. Steward

Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 413 ◽  
Author(s):  
Anh Chi Nguyen ◽  
Yves Weinand

Recent advances in timber construction have led to the realization of complex timber plate structures assembled with wood-wood connections. Although advanced numerical modelling tools have been developed to perform their structural analysis, limited experimental tests have been carried out on large-scale structures. However, experimental investigations remain necessary to better understand their mechanical behaviour and assess the numerical models developed. In this paper, static loading tests performed on timber plate shells of about 25 m span are reported. Displacements were measured at 16 target positions on the structure using a total station and on its entire bottom surface using a terrestrial laser scanner. Both methods were compared to each other and to a finite element model in which the semi-rigidity of the connections was represented by springs. Total station measurements provided more consistent results than point clouds, which nonetheless allowed the visualization of displacement fields. Results predicted by the model were found to be in good agreement with the measurements compared to a rigid model. The semi-rigid behaviour of the connections was therefore proven to be crucial to precisely predict the behaviour of the structure. Furthermore, large variations were observed between as-built and designed geometries due to the accumulation of fabrication and construction tolerances.


2019 ◽  
Vol 11 (12) ◽  
pp. 1471 ◽  
Author(s):  
Grazia Tucci ◽  
Antonio Gebbia ◽  
Alessandro Conti ◽  
Lidia Fiorini ◽  
Claudio Lubello

The monitoring and metric assessment of piles of natural or man-made materials plays a fundamental role in the production and management processes of multiple activities. Over time, the monitoring techniques have undergone an evolution linked to the progress of measure and data processing techniques; starting from classic topography to global navigation satellite system (GNSS) technologies up to the current survey systems like laser scanner and close-range photogrammetry. Last-generation 3D data management software allow for the processing of increasingly truer high-resolution 3D models. This study shows the results of a test for the monitoring and computing of stockpile volumes of material coming from the differentiated waste collection inserted in the recycling chain, performed by means of an unmanned aerial vehicle (UAV) photogrammetric survey and the generation of 3D models starting from point clouds. The test was carried out with two UAV flight sessions, with vertical and oblique camera configurations, and using a terrestrial laser scanner for measuring the ground control points and as ground truth for testing the two survey configurations. The computations of the volumes were carried out using two software and comparisons were made both with reference to the different survey configurations and to the computation software.


2019 ◽  
Vol 13 (2) ◽  
pp. 105-134 ◽  
Author(s):  
Mohammad Omidalizarandi ◽  
Boris Kargoll ◽  
Jens-André Paffenholz ◽  
Ingo Neumann

Abstract In the last two decades, the integration of a terrestrial laser scanner (TLS) and digital photogrammetry, besides other sensors integration, has received considerable attention for deformation monitoring of natural or man-made structures. Typically, a TLS is used for an area-based deformation analysis. A high-resolution digital camera may be attached on top of the TLS to increase the accuracy and completeness of deformation analysis by optimally combining points or line features extracted both from three-dimensional (3D) point clouds and captured images at different epochs of time. For this purpose, the external calibration parameters between the TLS and digital camera needs to be determined precisely. The camera calibration and internal TLS calibration are commonly carried out in advance in the laboratory environments. The focus of this research is to highly accurately and robustly estimate the external calibration parameters between the fused sensors using signalised target points. The observables are the image measurements, the 3D point clouds, and the horizontal angle reading of a TLS. In addition, laser tracker observations are used for the purpose of validation. The functional models are determined based on the space resection in photogrammetry using the collinearity condition equations, the 3D Helmert transformation and the constraint equation, which are solved in a rigorous bundle adjustment procedure. Three different adjustment procedures are developed and implemented: (1) an expectation maximization (EM) algorithm to solve a Gauss-Helmert model (GHM) with grouped t-distributed random deviations, (2) a novel EM algorithm to solve a corresponding quasi-Gauss-Markov model (qGMM) with t-distributed pseudo-misclosures, and (3) a classical least-squares procedure to solve the GHM with variance components and outlier removal. The comparison of the results demonstrates the precise, reliable, accurate and robust estimation of the parameters in particular by the second and third procedures in comparison to the first one. In addition, the results show that the second procedure is computationally more efficient than the other two.


2016 ◽  
Vol 18 (1) ◽  
pp. 111-132 ◽  
Author(s):  
Alexandre Escolà ◽  
José A. Martínez-Casasnovas ◽  
Josep Rufat ◽  
Jaume Arnó ◽  
Amadeu Arbonés ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document