scholarly journals TRUSTED DATA COMMUNICATION AND SECURITY ISSUES IN GNSS NETWORK OF TURKEY

Author(s):  
S. Bakici ◽  
B. Erkek ◽  
V. Manti ◽  
A. Altekin

There are three main activities of General Directorate of Land Registry and Cadastre. These are Mapping, Land Registry and Cadastre. Geomatic Department is responsible for mapping activities. The most important projects like TUSAGA-Aktif (CORS-Tr), Metadata Geoportal, Orthophoto Production and orthophoto web services and preparation of Turkish NSDI Feasibility Report have been conducted and completed by this department’s specialists since 2005.<br><br> TUSAGA-Aktif (CORS-Tr) System, serves location information at cm level accuracy in Turkey and TR Nortern Cyprus in few seconds, where adequate numbers of GNSS satellites are observed and communication possibilities are present. No ground control points and benchmarks are necessary. There are 146 permanent GNSS stations within the CORS-Tr System. Station data are transferred online to the main control center located in the Mapping Department of the General Directorate of Land Registry and Cadastre and to the control center located in the General Command of Mapping. Currently CORS-Tr has more than 9000 users. Most of them are private companies working for governmental organization. <br><br> Providing data communication between control center and both GNSS station and users via trusted and good substructure is important. Additionally, protection of the system and data against cyber attacks from domestic and foreign sources is important. This paper focuses on data communication and security issues of GNSS network named TUSAGA-Aktif.

2022 ◽  
Vol 16 (1) ◽  
pp. 0-0

Secure and efficient authentication mechanism becomes a major concern in cloud computing due to the data sharing among cloud server and user through internet. This paper proposed an efficient Hashing, Encryption and Chebyshev HEC-based authentication in order to provide security among data communication. With the formal and the informal security analysis, it has been demonstrated that the proposed HEC-based authentication approach provides data security more efficiently in cloud. The proposed approach amplifies the security issues and ensures the privacy and data security to the cloud user. Moreover, the proposed HEC-based authentication approach makes the system more robust and secured and has been verified with multiple scenarios. However, the proposed authentication approach requires less computational time and memory than the existing authentication techniques. The performance revealed by the proposed HEC-based authentication approach is measured in terms of computation time and memory as 26ms, and 1878bytes for 100Kb data size, respectively.


2012 ◽  
Vol 9 (1) ◽  
pp. 85-89 ◽  
Author(s):  
Chen Siying ◽  
Ma Hongchao ◽  
Zhang Yinchao ◽  
Zhong Liang ◽  
Xu Jixian ◽  
...  

Drones ◽  
2020 ◽  
Vol 4 (2) ◽  
pp. 13 ◽  
Author(s):  
Margaret Kalacska ◽  
Oliver Lucanus ◽  
J. Pablo Arroyo-Mora ◽  
Étienne Laliberté ◽  
Kathryn Elmer ◽  
...  

The rapid increase of low-cost consumer-grade to enterprise-level unmanned aerial systems (UASs) has resulted in the exponential use of these systems in many applications. Structure from motion with multiview stereo (SfM-MVS) photogrammetry is now the baseline for the development of orthoimages and 3D surfaces (e.g., digital elevation models). The horizontal and vertical positional accuracies (x, y and z) of these products in general, rely heavily on the use of ground control points (GCPs). However, for many applications, the use of GCPs is not possible. Here we tested 14 UASs to assess the positional and within-model accuracy of SfM-MVS reconstructions of low-relief landscapes without GCPs ranging from consumer to enterprise-grade vertical takeoff and landing (VTOL) platforms. We found that high positional accuracy is not necessarily related to the platform cost or grade, rather the most important aspect is the use of post-processing kinetic (PPK) or real-time kinetic (RTK) solutions for geotagging the photographs. SfM-MVS products generated from UAS with onboard geotagging, regardless of grade, results in greater positional accuracies and lower within-model errors. We conclude that where repeatability and adherence to a high level of accuracy are needed, only RTK and PPK systems should be used without GCPs.


Author(s):  
Jinshan Cao ◽  
Xiuxiao Yuan ◽  
Jianya Gong

Due to the large biases between the laboratory-calibrated values of the orientation parameters and their in-orbit true values, the initial direct georeferencing accuracy of the Ziyuan-3 (ZY-3) three-line camera (TLC) images can only reach the kilometre level. In this paper, a point-based geometric calibration model of the ZY-3 TLCs is firstly established by using the collinearity constraint, and then a line-based geometric calibration model is established by using the coplanarity constraint. With the help of both the point-based and the line-based models, a feasible in-orbit geometric calibration approach for the ZY-3 TLCs combining ground control points (GCPs) and ground control lines (GCLs) is presented. Experimental results show that like GCPs, GCLs can also provide effective ground control information for the geometric calibration of the ZY-3 TLCs. The calibration accuracy of the look angles of charge-coupled device (CCD) detectors achieved by using the presented approach reached up to about 1.0''. After the geometric calibration, the direct georeferencing accuracy of the ZY-3 TLC images without ground controls was significantly improved from the kilometre level to better than 11 m in planimetry and 9 m in height. A more satisfactory georeferencing accuracy of better than 3.5 m in planimetry and 3.0 m in height was achieved after the block adjustment with four GCPs.


Sign in / Sign up

Export Citation Format

Share Document