scholarly journals URBAN HEAT ISLAND FOOTPRINT EFFECTS ON BIO-PRODUCTIVE RURAL LAND COVERS SURROUNDING A LOW DENSITY URBAN CENTER

Author(s):  
M. Burnett ◽  
D. Chen

Abstract. The urban heat island (UHI) is a common effect caused by urbanization and has been studied to evaluate the thermal condition in cities worldwide. However, most previous UHI analyses are performed in major metropolitan cities. This study conducts a spatiotemporal analysis of UHI in a rapidly expanding low-density suburban centre and determines how bio-productive land covers react and the extent of the disturbance to each land cover based on time series land surface temperatures extracted from Landsat 7 ETM+ images. Two methods applied and compared are the single exponential decay method, which measures UHI footprint (UHIFP) on vegetation phenology, and the two dimensional Gaussian surface, which quantifies the influence based on distance from the local urban perimeter. Three spectral indices (Normalized Difference Vegetation Index (NDVI), Moisture Index (NDMI), and the Enhanced Vegetation Index (EVI)) were extracted and the residuals from the Gaussian model were compared based on these indices in order to better understand the thermal variations of each land cover within a UHI. The results show that the UHIFP of the studied low-density suburban centre is 1.4 times larger than the size of the urban centre, marginally smaller than previous analyses performed within high-density metropolises. All vegetated land covers experienced their maximum cooling effects before reaching the UHIFP perimeter while urban surfaces begin to diverge from the Gaussian model outside of the UHIFP. The residuals of sparse vegetation maintained strong correlations with each index throughout the growing season while NDMI retained the strongest relationships with every land cover. This study has helped us better understand the UHI effects of small communities with varied vegetation phonology based on the distribution of built-up pervious and impervious surfaces within the neighbourhood structure. The similar results from both methods indicate a strong urban cover influence overpowering the dominant distribution of agricultural surfaces throughout the growing season.

2019 ◽  
Vol 8 (1) ◽  
pp. 17-29
Author(s):  
Bijesh Mishra ◽  
Jeremy Sandifer ◽  
Buddhi Raj Gyawali

The term “urban heat island” (UHI) describes increased surface and atmospheric temperatures in an urban core relative to surrounding non-urbanized areas. Although the phenomenon has been studied to a great extent throughout the world, it is less understood for Kathmandu, Nepal. This study used the Moderate Resolution Imaging Spectro-radiometer (MODIS) 8-day product (MOD11A2) to evaluate land surface temperatures (LSTs), the MODIS-derived Normalized Difference Vegetation Index (NDVI) 16-day product (MOD13Q1) to quantify land surface characteristics, and the MODIS annual land cover classification product (MCD12Q1) to identify major land cover classes. We evaluated the spatial correlation between significant changes in LSTs and NDVI between 2000–2018. Overall, urban (permanently developed areas) LSTs were consistently greater than non-urban (forests and dynamic agriculture lands) LSTs; however, the rate of increase in temperature was higher outside the central Kathmandu developed urban area. Furthermore, significant changes in NDVI values over time were more widespread and not always spatially coincident with significant changes in LST values, particularly for forested land areas. These results provide insight into systematic planning of open and green areas, construction of new infrastructure in peripheral areas, and highlight the challenges in applying traditional UHI conceptual models to rapidly developing urban areas such as Kathmandu, Nepal.


2021 ◽  
Vol 10 (6) ◽  
pp. 416
Author(s):  
Nagihan Aslan ◽  
Dilek Koc-San

The aims of this study were to determine surface urban heat island (SUHI) effects and to analyze the land use/land cover (LULC) and land surface temperature (LST) changes for 11 time periods from the years 2002 to 2020 using Landsat time series images. Bursa, which is the fourth largest metropolitan city in Turkey, was selected as the study area, and Landsat multi-temporal images of the summer season were used. Firstly, the normalized difference vegetation index (NDVI), soil-adjusted vegetation index (SAVI), modified normalized difference water index (MNDWI) and index-based built-up index (IBI) were created using the bands of Landsat images, and LULC classes were determined by applying automatic thresholding. The LST values were calculated using thermal images and SUHI effects were determined. The results show that NDVI, SAVI, MNDWI and IBI indices can be used effectively for the determination of the urban, vegetation and water LULC classes for SUHI studies, with overall classification accuracies between 89.60% and 95.90% for the used images. According to the obtained results, generally the LST values increased for almost all land cover areas between the years 2002 and 2020. The SUHI magnitudes were computed by using two methods, and it was found that there was an important increase in the 18-year time period.


2021 ◽  
Vol 13 (3) ◽  
pp. 1099
Author(s):  
Yuhe Ma ◽  
Mudan Zhao ◽  
Jianbo Li ◽  
Jian Wang ◽  
Lifa Hu

One of the climate problems caused by rapid urbanization is the urban heat island effect, which directly threatens the human survival environment. In general, some land cover types, such as vegetation and water, are generally considered to alleviate the urban heat island effect, because these landscapes can significantly reduce the temperature of the surrounding environment, known as the cold island effect. However, this phenomenon varies over different geographical locations, climates, and other environmental factors. Therefore, how to reasonably configure these land cover types with the cooling effect from the perspective of urban planning is a great challenge, and it is necessary to find the regularity of this effect by designing experiments in more cities. In this study, land cover (LC) classification and land surface temperature (LST) of Xi’an, Xianyang and its surrounding areas were obtained by Landsat-8 images. The land types with cooling effect were identified and their ideal configuration was discussed through grid analysis, distance analysis, landscape index analysis and correlation analysis. The results showed that an obvious cooling effect occurred in both woodland and water at different spatial scales. The cooling distance of woodland is 330 m, much more than that of water (180 m), but the land surface temperature around water decreased more than that around the woodland within the cooling distance. In the specific urban planning cases, woodland can be designed with a complex shape, high tree planting density and large planting areas while water bodies with large patch areas to cool the densely built-up areas. The results of this study have utility for researchers, urban planners and urban designers seeking how to efficiently and reasonably rearrange landscapes with cooling effect and in urban land design, which is of great significance to improve urban heat island problem.


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 572
Author(s):  
Daisuke Narumi ◽  
Ronnen Levinson ◽  
Yoshiyuki Shimoda

Urban air temperature rises induced by the urban heat island (UHIE) effect or by global warming (GW) can be beneficial in winter but detrimental in summer. The SCIENCE-Outdoor model was used to simulate changes to sensible heat release and CO2 emissions from buildings yielded by four UHIE countermeasures and five GW countermeasures. This model can evaluate the thermal condition of building envelope surfaces, both inside and outside. The results showed that water-consuming UHIE countermeasures such as evaporative space cooling and roof water showering provided positive effects (decreasing sensible heat release and CO2 emissions related to space conditioning) in summer. Additionally, they had no negative (unwanted cooling) effects in winter since they can be turned off in the heating season. Roof greening can provide the greatest space- conditioning CO2 emissions reductions among four UHIE countermeasures, and it reduces the amount of heat release slightly in the heating season. Since the effect on reducing carbon dioxide (CO2) emissions by UHIE countermeasures is not very significant, it is desirable to introduce GW countermeasures in order to reduce CO2 emissions. The significance of this study is that it constructed the new simulation model SCIENCE-Outdoor and applied it to show the influence of countermeasures upon both heat release and CO2 emissions.


2021 ◽  
Author(s):  
Kazi Jihadur Rashid ◽  
Sumaia Islam ◽  
Mohammad Atiqur Rahman

Abstract Urban heat island (UHI) is one of the major causes for deteriorating ecology of the rapidly expanding Dhaka city in the changing climatic conditions. Although researchers have identified, characterized and modeled UHI in the study area, the ecological evaluation of UHI effect has not yet been focused. This study uses land surface normalization techniques such as urban thermal field variance (UTFVI) to quantify the impact of UHI and also identifies vulnerable UHI areas compared to land cover types. Landsat imageries from 1990 to 2020 were used at decadal intervals. Results of the study primarily show that intensified UHI areas have increased spatially from 33.1–40.9% in response to urban growth throughout the period of 1990 to 2020. Extreme surface temperature values above 31°C have also been shown in open soils in under-construction sites for future developmental purposes. UTFVI is categorized into six categories representing UHI intensity in relation to ecological conditions. Finally, comparative analysis between land use/land cover (LULC) with UTFVI shows that the ecological conditions deteriorate as the intensity of UHI increases in the area. The developed areas facing ecological threat have increased from 9.3–19.8% throughout the period. Effective mitigating measures such as increasing green surfaces and planned urbanization practices are crucial in this regard. This study would help policymakers to concentrate on controlling thermal exposure and on preserving sustainable urban life.


2018 ◽  
Vol 57 ◽  
pp. 04002
Author(s):  
Yi-Cheng Chiang ◽  
Hong-Yun Lin

Urban heat-island effect causes the vicious cycle of city high temperature. The collocation of green park space can effectively cool down the heat of city. This research studies the cooling effects of the park dispersion by simulations of PUD projects. In this study, 3 different schemes were developed and simulated by CFD software. The results show that the more disperse the parks are, the lower the site temperatures.


Sign in / Sign up

Export Citation Format

Share Document