scholarly journals PROPOSAL FOR A WEB ENCODING SERVICE (WES) FOR SPATIAL DATA TRANSACTIO

Author(s):  
C. B. Siew ◽  
S. Peters ◽  
A. A. Rahman

Web services utilizations in Spatial Data Infrastructure (SDI) have been well established and standardized by Open Geospatial Consortium (OGC). Similar web services for 3D SDI are also being established in recent years, with extended capabilities to handle 3D spatial data. The increasing popularity of using <i>City Geographic Markup Language</i> (CityGML) for 3D city modelling applications leads to the needs for large spatial data handling for data delivery. This paper revisits the available web services in OGC Web Services (OWS), and propose the background concepts and requirements for encoding spatial data via Web Encoding Service (WES). Furthermore, the paper discusses the data flow of the encoder within web service, e.g. possible integration with Web Processing Service (WPS) or Web 3D Services (W3DS). The integration with available web service could be extended to other available web services for efficient handling of spatial data, especially 3D spatial data.

Author(s):  
Carlos Granell ◽  
Laura Díaz ◽  
Michael Gould

The development of geographic information systems (GISs) has been highly influenced by the overall progress of information technology (IT). These systems evolved from monolithic systems to become personal desktop GISs, with all or most data held locally, and then evolved to the Internet GIS paradigm in the form of Web services (Peng & Tsou, 2001). The highly distributed Web services model is such that geospatial data are loosely coupled with the underlying systems used to create and handle them, and geospatial processing functionalities are made available as remote, interoperable, discoverable geospatial services. In recent years the software industry has moved from tightly coupled application architectures such as CORBA (Common Object Request Broker Architecture?Vinoski, 1997) toward service-oriented architectures (SOAs) based on a network of interoperable, well-described services accessible via Web protocols. This has led to de facto standards for delivery of services such as Web Service Description Language (WSDL) to describe the functionality of a service, Simple Object Access Protocol (SOAP) to encapsulate Web service messages, and Universal Description, Discovery, and Integration (UDDI) to register and provide access to service offerings. Adoption of this Web services technology as an option to monolithic GISs is an emerging trend to provide distributed geospatial access, visualization, and processing. The GIS approach to SOA-based applications is perhaps best represented by the spatial data infrastructure (SDI) paradigm, in which standardized interfaces are the key to allowing geographic services to communicate with each other in an interoperable manner. This article focuses on standard interfaces and also on current implementations of geospatial data processing over the Web, commonly used in SDI environments. We also mention several challenges yet to be met, such as those concerned with semantics, discovery, and chaining of geospatial processing services and also with the extension of geospatial processing capabilities to the SOA world.


Author(s):  
Carl N. Reed

This chapter discusses the role of Open Geospatial Consortium (OGC) geospatial standards as a key aspect in the development, deployment, and use of Geospatial Web Services. The OGC vision for web services is the complete integration of geographic (location) and time information into the very fabric of both the internet and the web. Today, the Geospatial Web Services encompasses applications ranging from as simple as geo-tagging a photograph to mobile driving directions to sophisticated spatial data infrastructure portal applications orchestrating workflows for complex scientific modeling applications. In all of these applications, location and usually time are required information elements. In many of these applications, standards are the “glue” that allow the easy and seamless integration of location and time in applications - whether simple mass market or integration into enterprise workflows. These standards may be very lightweight, such as GeoRSS, or more sophisticated such as the OGC Web Feature Service (WFS) and Geography Markup Language (GML).


2018 ◽  
Vol 7 (10) ◽  
pp. 404 ◽  
Author(s):  
Mahdi Farnaghi ◽  
Ali Mansourian

Automatic composition of geospatial web services increases the possibility of taking full advantage of spatial data and processing capabilities that have been published over the internet. In this paper, a multi-agent artificial intelligence (AI) planning solution was proposed, which works within the geoportal architecture and enables the geoportal to compose semantically annotated Open Geospatial Consortium (OGC) Web Services based on users’ requirements. In this solution, the registered Catalogue Service for Web (CSW) services in the geoportal along with a composition coordinator component interact together to synthesize Open Geospatial Consortium Web Services (OWSs) and generate the composition workflow. A prototype geoportal was developed, a case study of evacuation sheltering was implemented to illustrate the functionality of the algorithm, and a simulation environment, including one hundred simulated OWSs and five CSW services, was used to test the performance of the solution in a more complex circumstance. The prototype geoportal was able to generate the composite web service, based on the requested goals of the user. Additionally, in the simulation environment, while the execution time of the composition with two CSW service nodes was 20 s, the addition of new CSW nodes reduced the composition time exponentially, so that with five CSW nodes the execution time reduced to 0.3 s. Results showed that due to the utilization of the computational power of CSW services, the solution was fast, horizontally scalable, and less vulnerable to the exponential growth in the search space of the AI planning problem.


Author(s):  
A. K. Tripathi ◽  
S. Agrawal ◽  
R. D. Gupta

Abstract. Sharing and management of geospatial data among different communities and users is a challenge which is suitably addressed by Spatial Data Infrastructure (SDI). SDI helps people in the discovery, editing, processing and visualization of spatial data. The user can download the data from SDI and process it using the local resources. However, large volume and heterogeneity of data make this processing difficult at the client end. This problem can be resolved by orchestrating the Web Processing Service (WPS) with SDI. WPS is a service interface through which geoprocessing can be done over the internet. In this paper, a WPS enabled SDI framework with OGC compliant services is conceptualized and developed. It is based on the three tier client server architecture. OGC services are provided through GeoServer. WPS extension of GeoServer is used to perform geospatial data processing and analysis. The developed framework is utilized to create a public health SDI prototype using Open Source Software (OSS). The integration of WPS with SDI demonstrates how the various data analysis operations of WPS can be performed over the web on distributed data sources provided by SDI.


2018 ◽  
Vol 4 ◽  
pp. e152 ◽  
Author(s):  
Paolo Corti ◽  
Athanasios Tom Kralidis ◽  
Benjamin Lewis

A spatial data infrastructure (SDI) is a framework of geospatial data, metadata, users and tools intended to provide an efficient and flexible way to use spatial information. One of the key software components of an SDI is the catalogue service which is needed to discover, query and manage the metadata. Catalogue services in an SDI are typically based on the Open Geospatial Consortium (OGC) Catalogue Service for the Web (CSW) standard which defines common interfaces for accessing the metadata information. A search engine is a software system capable of supporting fast and reliable search, which may use ‘any means necessary’ to get users to the resources they need quickly and efficiently. These techniques may include full text search, natural language processing, weighted results, fuzzy tolerance results, faceting, hit highlighting, recommendations and many others. In this paper we present an example of a search engine being added to an SDI to improve search against large collections of geospatial datasets. The Centre for Geographic Analysis (CGA) at Harvard University re-engineered the search component of its public domain SDI (Harvard WorldMap) which is based on the GeoNode platform. A search engine was added to the SDI stack to enhance the CSW catalogue discovery abilities. It is now possible to discover spatial datasets from metadata by using the standard search operations of the catalogue and to take advantage of the new abilities of the search engine, to return relevant and reliable content to SDI users.


2011 ◽  
Vol 14 (1) ◽  
pp. 93-107 ◽  
Author(s):  
Eric Boisvert ◽  
Boyan Brodaric

Increasing stress on global groundwater resources is leading to new approaches to the management and delivery of groundwater data. These approaches include the deployment of a Spatial Data Infrastructure (SDI) to enable online data interoperability amongst numerous and heterogeneous data sources. Often an important component of an SDI is a global domain schema, which serves as a central structure for the query and transport of data, but at present there does not exist a schema for groundwater data that is strongly compliant with SDI concepts, standards, and technologies. In this paper we present GroundWater Markup Language (GWML), a groundwater application of the Geography Markup Language (GML). GWML can be used in conjunction with a variety of web services to facilitate data interoperability in a SDI. We describe three common usage scenarios that motivate the design of GWML and a three-stage design methodology involving conceptual, logical and physical schemas. The resultant GWML has broad scope as demonstrated by its implementation in the Canadian Groundwater Information Network. Example uses include decision support in resource management, a scientific application for aquifer mapping, and a commercial application for drill site selection. These demonstrated uses suggest GWML can play a key role in emerging groundwater SDI.


2019 ◽  
Vol 4 (3) ◽  
pp. 230
Author(s):  
Bashkim Idrizi ◽  
Mirdon Kurteshi

The purpose of research to determine and contribute in more efficient services to geoinformation stakeholders, as well as to give positive impact on increasing income in geo business sector, voluntary based web system for online usage of geoinformation in Kosovo has been developed. The method used was puting in to one place many sourcec via WMS and WFS services, by creating thematic SDI, in order to have online system with dynamic data comming from official databases with update from last day on 5 pm. System is open for usage by all interested parts, however official registration is required. It contains geoinformation from many databases such as cadastral, orthophoto, municipal, and basemaps from open layers. The results show that the system is extendable and it is permanently including new datasets based on the user requirements. All available data is linked via web services, which gives an opportunity to users to use the updated version of datasets as they are published by responsible institution via www (world wide web). Keywords: web map, geoportal, geoinformation, web services, Kosovo References Alameh. N, (2010). Service chaining of interoperable Geographic Information Web Services. Global Science and Technology. Greenbelt, USA. Brimicombe, A.J. (2002). GIS-where are the frontiers now. GIS 2002. Bahrain. Bryukhanova, E. A., Krupochkin, Y. P., & Rygalova, M. V. (2018). Geoinformation technologies in the reconstruction of the social space of siberian cities at the turn of the 19–20th centuries (case study of the city of tobolsk). Journal of Siberian Federal University - Humanities and Social Sciences, 11(8), 1229-1242. doi:10.17516/1997-1370-0303 Chaudhuri, S. (2015). Application of Web Based Geographical Information Systems in e-business. Maldives. Davis, C.A. and Alves L.L. (2007). Geospatial web services, Vicosa, Brazil. ESRI. (2003). Spatial Data Standards and GIS interoperability. White paper. ESRI. CA. USA. Ferdousi, . and Al-Faisal, A. (2018). Urban and regional planning. Rajshahi University of Engineering and Technology. Rajshahi. Bangladesh. Gitis, V., Derendyaev, A., & Weinstock, A. (2016). Web-based GIS technologies for monitoring and analysis of spatio-temporal processes. International Journal of Web Information Systems, 12(1), 102-124. doi:10.1108/IJWIS-10-2015-0032 Glasze, G., & Perkins, C. (2015). Social and political dimensions of the OpenStreetMap project: Towards a critical geographical research agenda doi:10.1007/978-3-319-14280-7_8 Henzen, C. (2018). Building a framework of usability patterns for web applications in spatial data infrastructures. ISPRS International Journal of Geo-Information, 7(11) doi:10.3390/ijgi7110446 Idrizi, B. (2009). Developing of National Spatial Data Infrastructure of Macedonia according to global standardization (GSDI and INSPIRE) and local status. Conference of Nikodinovski.  Skopje. Macedonia. Idrizi, B. (2018). General Conditions of Spatial Data Infrastructure. International Journal on Natural and Engineering Sciences. Turkey. Idrizi, B. Sulejmani, V. Zimeri, Z. (2018). Multi-scale map for three levels of spatial planning data sets for the municipality of Vitia in Kosova. 7th ICC&GIS conference. Sozopol. Bulgaria. Mwange, C., Mulaku, G. C., & Siriba, D. N. (2018). Reviewing the status of national spatial data infrastructures in africa. Survey Review, 50(360), 191-200. doi:10.1080/00396265.2016.1259720 Nikolov, B. P., Zharkikh, J. I., Soloviev, A. A., Krasnoperov, R. I., & Agayan, S. M. (2015). Integration of data mining methods for earth science data analysis in GIS environment. Russian Journal of Earth Sciences, 15(4) doi:10.2205/2015ES000559 Sahin, K. and Gumusay, M.U. (2008). Service oriented architecture based web services for geographic information systems. The international archives of the remote sensing, photogrammetry and spatial information sciences. Vol XXXVII. Beijing. China. Sayar, A. (2008). GIS service oriented architecture. Community grids laboratory. IN, USA. Shi, S. (2015). Design and development of an online geoinformation service delivery of geospatial models in the united kingdom. Environmental Earth Sciences, 74(10), 7069-7080. doi:10.1007/s12665-015-4243-8 Siles, G., Charland, A., Voirin, Y., & Bénié, G. B. (2019). Integration of landscape and structure indicators into a web-based geoinformation system for assessing wetlands status. Ecological Informatics, 52, 166-176. doi:10.1016/j.ecoinf.2019.05.011 Ummadi, P. (2008). Standards and Interoperability in GIS, Michigan State University. MI, USA. Vorobev, A. V., & Shakirova, G. R. (2016). Web-based geoinformation system for exploring geomagnetic field, its variations and anomalies doi:10.1007/978-3-319-29589-3_2 Walter, V., & Sörgel, U. (2018). Implementation, results, and problems of paid crowd-based geospatial data collection. PFG - Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 86(3-4), 187-197. doi:10.1007/s41064-018-0058-z   Copyright (c) 2019 Geosfera Indonesia Journal and Department of Geography Education, University of Jember This work is licensed under a Creative Commons Attribution-Share A like 4.0 International License


Author(s):  
C. B. Siew ◽  
A. Abdul Rahman

Web services utilizations in Spatial Data Infrastructure (SDI) have been well established and standardized by Open Geospatial 3D graphics rendering has been a topic of interest among scientific domain from both computer science and geospatial science. Different methods were proposed and discussed in these researches for different domains and applications. Each method provides advantages and trade-offs. Some methods proposed image based rendering for 3D graphics and ultimately. This paper attempts to discuss several techniques from past researches and attempts to propose another method inspired from these techniques, customized for 3D SDI its data workflow use cases.


2014 ◽  
Vol 60 (4) ◽  
pp. 9-18 ◽  
Author(s):  
Marina Tavra ◽  
Vlado Cetl ◽  
Tea Duplančić Leder

Abstract Need for a Marine Spatial Data Infrastructure (MSDI) as a component of a National Spatial Data Infrastructure (NSDI) is widely recognized. An MSDI is relevant not only for hydrographers and government planners, but also for many other sectors which takes interest in marine spatial data, whether they are data users, data providers, or data managers [9]. An MSDI encompasses marine and coastal geographic and business information. For efficient use of Marine Spatial Data, it is necessary to ensure its valid and accessible distribution. A geoportal is a specialized web portal for sharing spatial information at different levels over the Internet. This paper re-examines the implementation of an MSDI and what it means for data custodians and end users. Several geoportals are reviewed (German and Australian) to determine their web services functionality, capabilities and the scope to which they support the sharing and reuse of Marine Spatial Data to assist the development of the Croatian MSDI Geoportal. This framework provides a context for better understanding the information bases on spatial data standards and a tool for evaluation of MSDI dissemination - Geoportal.


Sign in / Sign up

Export Citation Format

Share Document