scholarly journals "Improved Geometric Network Model" (IGNM): a novel approach for deriving Connectivity Graphs for Indoor Navigation

Author(s):  
F. Mortari ◽  
S. Zlatanova ◽  
L. Liu ◽  
E. Clementini

Over the past few years Personal Navigation Systems have become an established tool for route planning, but they are mainly designed for outdoor environments. Indoor navigation is still a challenging research area for several reasons: positioning is not very accurate, users can freely move between the interior boundaries of buildings, path network construction process may not be easy and straightforward due to complexity of indoor space configurations. Therefore the creation of a good network is essential for deriving overall connectivity of a building and for representing position of objects within the environment. This paper reviews current approaches to automatic derivation of route graphs for indoor navigation and discusses some of their limitations. Then, it introduces a novel algorithmic strategy for extracting a 3D connectivity graph for indoor navigation based on 2D floor plans.

Author(s):  
APURVA MEHTA ◽  
D. D. PUKALE ◽  
RADHIKA BHAGAT ◽  
RUJAL SHAH

In the past few years, a number of ideas have been proposed for indoor navigation systems. These ideas were not as widely implemented as outdoor positioning systems like GPS(Global Positioning Systems). We propose an indoor navigation assistance system using Bluetooth which is low cost and feasible to use in daily life. Our system enables users with handheld mobile devices to steer with ease through the indoor premises using the short range radio frequencies of Bluetooth. It also establishes user’s current location and the various paths leading to the destination. Dijkstra’s algorithm is used to determine the shortest path from the source to the required destination.


Author(s):  
Ali Hojjat

Indoor navigation systems must deal with absence of GPS signals, since they are only available in outdoor environments. Therefore, indoor systems have to rely upon other techniques for positioning users. Recently various indoor navigation systems have been designed and developed to help visually impaired people. In this paper an overview of some existing indoor navigation systems for visually impaired people are presented and they are compared from different perspectives. The evaluated techniques are ultrasonic systems, RFID-based solutions, computer vision aided navigation systems, ans smartphone-based applications.


Author(s):  
Ali Jamali ◽  
Alias Abdul Rahman ◽  
Pawel Boguslawski

GIS integrates spatial information and spatial analysis. An important example of such integration is for emergency response which requires route planning inside and outside of a building. Route planning requires detailed information related to indoor and outdoor environment. Indoor navigation network models including Geometric Network Model (GNM), Navigable Space Model, sub-division model and regular-grid model lack indoor data sources and abstraction methods. In this paper, a hybrid indoor space model is proposed. In the proposed method, 3D modeling of indoor navigation network is based on surveying control points and it is less dependent on the 3D geometrical building model. This research proposes a method of indoor space modeling for the buildings which do not have proper 2D/3D geometrical models or they lack semantic or topological information. The proposed hybrid model consists of topological, geometrical and semantical space.


Author(s):  
M. Previtali ◽  
L. Barazzetti ◽  
F. Roncoroni

<p><strong>Abstract.</strong> Automated identification of high-level structures in unorganized point cloud of indoor spaces Indoor space is an important aspect of scene analysis that provides essential information for many applications, such as building digitization, indoor navigation and evacuation route planning. In addition, detection of repetition and regularities in the organization indoor environments, such as rooms, can be used to provide a contextual relationship in the reconstruction phase. However, retrieving high-level information is a challenging task due to the unorganized nature of the raw data, poor-quality of the input data that are in many cases contaminated with noise and outliers. in point benefit from the apparent regularities and strong contextual relationships in façades. The main observation exploited in this paper is the fact that building indoor is generally constituted by a set of basic shapes repeated several times in regular layouts. Building elements can be considered as similar if they share a set of features and elements in an idealized layout exhibiting some regularities. Starting from this main assumption a recursive adaptive partitioning of the indoor point cloud is carried out to automatically derive a flexible and hierarchical 3D representation of the building space. The presented methodology is tested on a synthetic dataset with Gaussian noise. The reconstructed pattern shows a close correspondence with the synthetic one showing the viability of the proposed approach.</p>


2020 ◽  
Vol 9 (2) ◽  
pp. 132 ◽  
Author(s):  
Nina Vanhaeren ◽  
Laure De Cock ◽  
Lieselot Lapon ◽  
Nico Van de Weghe ◽  
Kristien Ooms ◽  
...  

Indoor navigation systems are not well adapted to the needs of their users. The route planning algorithms implemented in these systems are usually limited to shortest path calculations or derivatives, minimalizing Euclidian distance. Guiding people along routes that adhere better to their cognitive processes could ease wayfinding in indoor environments. This paper examines comfort and confusion perception during wayfinding by applying a mixed-method approach. The aforementioned method combined an exploratory focus group and a video-based online survey. From the discussions in the focus group, it could be concluded that indoor wayfinding must be considered at different levels: the local level and the global level. In the online survey, the focus was limited to the local level, i.e., local environmental characteristics. In this online study, the comfort and confusion ratings of multiple indoor navigation situations were analyzed. In general, the results indicate that open spaces and stairs need to be taken into account in the development of a more cognitively-sounding route planning algorithm. Implementing the results in a route planning algorithm could be a valuable improvement of indoor navigation support.


2021 ◽  
Vol 10 (2) ◽  
pp. 65
Author(s):  
Amin Gharebaghi ◽  
Mir-Abolfazl Mostafavi ◽  
Geoffrey Edwards ◽  
Patrick Fougeyrollas

Mobility is fundamental for social participation. Everyone benefits from pedestrian networks for their mobility and daily activities. People without disabilities may have little difficulty walking on narrow sidewalks, over potholes, and so on. However, people with motor disabilities (PWMD) may find it more difficult to deal with such conditions. For PWMD, even routine trips are often fraught with problems, with many different obstacles restricting their mobility and consequently rendering their participation in social and recreational activities difficult. The potential problems and risks associated with mobility for PWMD could be significantly reduced if navigation systems provided them with appropriate accessible routes. These routes should consider PWMD’s personal capabilities as well as sidewalk-network conditions. In this paper, we propose a novel approach for computing a user-specific route for PWMD. Such a route is personalized based on the user’s confidence to deal with obstacles such as slopes, uneven pavement, etc. We show how user reported confidence levels could be used to aggregate sidewalk conditions in a routing model to offer user-specific routes. The proposed methodology was developed using a fuzzy approach and is evaluated by manual wheelchair users in Quebec City.


2021 ◽  
Vol 11 (16) ◽  
pp. 7515
Author(s):  
Fangfang Lu ◽  
Hao Zhou ◽  
Lingling Guo ◽  
Jingjing Chen ◽  
Licheng Pei

Currently, the route planning functions in 2D/3D campus navigation systems in the market are unable to process indoor and outdoor localization information simultaneously, and the UI experiences are not optimal because they are limited by the service platforms. An ARCore-based augmented reality campus navigation system is designed in this paper in order to solve the relevant problems. Firstly, the proposed campus navigation system uses ARCore to enhance reality by presenting 3D information in real scenes. Secondly, a visual inertial ranging algorithm is proposed for real-time locating and map generating in mobile devices. Finally, rich Unity3D scripts are designed in order to enhance users’ autonomy and enjoyment during navigation experience. In this paper, indoor navigation and outdoor navigation experiments are carried out at the Lingang campus of Shanghai University of Electric Power. Compared with the AR outdoor navigation system of Gaode, the proposed AR system can achieve increased precise outdoor localization by deploying the visual inertia odometer on the mobile phone and realizes the augmented reality function of 3D information and real scene, thus enriching the user’s interactive experience. Furthermore, four groups of students have been selected for system testing and evaluation. Compared with traditional systems, such as Gaode map or Internet media, experimental results show that our system could facilitate the effectiveness and usability of learning on campus.


Author(s):  
Ali Hojjat

Indoor navigation systems must deal with absence of GPS signals, since they are only available in outdoor environments. Therefore, indoor systems have to rely upon other techniques for positioning users. Recently various indoor navigation systems have been designed and developed to help visually impaired people. In this paper an overview of some existing indoor navigation systems for visually impaired people are presented and they are compared from different perspectives. The evaluated techniques are ultrasonic systems, RFID-based solutions, computer vision aided navigation systems, ans smartphone-based applications.


2019 ◽  
Vol 1 ◽  
pp. 1-2
Author(s):  
Nina Vanhaeren ◽  
Kristien Ooms ◽  
Philippe De Maeyer

<p><strong>Abstract.</strong> Wayfinding in the indoor environment is challenging and people often get lost indoors. Navigation systems guide people in these environments, however, the existing systems are not well adapted to their users. The focus of our research is on the route planning aspect of navigation systems. By adapting the routes that people are guided along in the environment, our goal is to substantially improve the wayfinding experience for the users of those systems. Guiding people along routes that adhere better to their cognitive processes could ease the wayfinder in the indoor environment.</p><p>To select the aspects that should be implemented in a routing algorithm that calculates such routes, a mixed method approach was applied. In this approach, the results of an exploratory focus group and a complementary online survey were combined. To validate these results, a real-life experiment is being developed at the time of writing.</p><p>Our first study, the exploratory focus group, comprised academic researchers and experts with different background (i.e. Psychology, Geography and Architectural Design). The discussions were guided by a rotating wheel according to the GPS-method which was developed by the Flanders District of Creativity. These discussions provided a broad overview of the elements to be regarded when studying wayfinding. Moreover, results indicate that route complexity has to be considered at different levels: local level (i.e. at decision points) and global level (i.e. legibility of the building). Based on the results of the focus group, multiple situations with specific local characteristics likely inducing confusion and discomfort (e.g. specific intersections, different stair cases, different door types) were selected to elaborate more deeply in the complementary online survey. In this survey, videos of these situations were shown to the participants, as if they were navigating through the building. They were asked to rank their comfort and confusion level about the recorded situation on a 5-point Likert-scale. The results show that visibility, visual clutter and geometric simplicity are of substantial importance when evaluating comfort and confusion levels, and thus the complexity of indoor navigation situations.</p><p>Since body-movement and the real-world perceptions, which have a substantial impact on information processing and spatial decision making [1], are excluded in these well-controlled lab environments of the previous studies, a real-life experiment will be executed to validate previous findings. The developed study design is in line with the experiment design of previous wayfinding studies [2], [3]. Eye tracking data of participants guided through different complex buildings along different paths (i.e. shortest path and fewest turn path) will be recorded. Performance measures (e.g. duration, stops, errors), eye tracking measures (e.g. fixation number, fixating duration) and annotations of the accompanying researcher, which are all measures indicating complexity and cognitive load, will be compared across the different paths and its decision points. This analysis will allow us to determine complex routes and to identify the environmental characteristics increasing the perceived complexity. Moreover, it will lead to an understanding how and in which occasions people make wayfinding errors.</p><p>In a subsequent phase of our research project, these results will be incorporated in a cognitively-sounding route planning algorithm which could be a valuable improvement of indoor navigation support. Focus will be on the theoretical interpretation of the underlying spatial concepts. Adjusting the route planning support of indoor navigation systems to human wayfinding behavior could be a substantial contribution in this area.</p>


Sign in / Sign up

Export Citation Format

Share Document