scholarly journals Accuracy assessment of modeling architectural structures and details using terrestrial laser scanning

Author(s):  
M. Kedzierski ◽  
P. Walczykowski ◽  
A. Orych ◽  
P. Czarnecka

One of the most important aspects when performing architectural documentation of cultural heritage structures is the accuracy of both the data and the products which are generated from these data: documentation in the form of 3D models or vector drawings. The paper describes an assessment of the accuracy of modelling data acquired using a terrestrial phase scanner in relation to the density of a point cloud representing the surface of different types of construction materials typical for cultural heritage structures. This analysis includes the impact of the scanning geometry: the incidence angle of the laser beam and the scanning distance. For the purposes of this research, a test field consisting of samples of different types of construction materials (brick, wood, plastic, plaster, a ceramic tile, sheet metal) was built. The study involved conducting measurements at different angles and from a range of distances for chosen scanning densities. Data, acquired in the form of point clouds, were then filtered and modelled. An accuracy assessment of the 3D model was conducted by fitting it with the point cloud. The reflection intensity of each type of material was also analyzed, trying to determine which construction materials have the highest reflectance coefficients, and which have the lowest reflection coefficients, and in turn how this variable changes for different scanning parameters. Additionally measurements were taken of a fragment of a building in order to compare the results obtained in laboratory conditions, with those taken in field conditions.

Drones ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 145
Author(s):  
Alessandra Capolupo

A proper classification of 3D point clouds allows fully exploiting data potentiality in assessing and preserving cultural heritage. Point cloud classification workflow is commonly based on the selection and extraction of respective geometric features. Although several research activities have investigated the impact of geometric features on classification outcomes accuracy, only a few works focused on their accuracy and reliability. This paper investigates the accuracy of 3D point cloud geometric features through a statistical analysis based on their corresponding eigenvalues and covariance with the aim of exploiting their effectiveness for cultural heritage classification. The proposed approach was separately applied on two high-quality 3D point clouds of the All Saints’ Monastery of Cuti (Bari, Southern Italy), generated using two competing survey techniques: Remotely Piloted Aircraft System (RPAS) Structure from Motion (SfM) and Multi View Stereo (MVS) techniques and Terrestrial Laser Scanner (TLS). Point cloud compatibility was guaranteed through re-alignment and co-registration of data. The geometric features accuracy obtained by adopting the RPAS digital photogrammetric and TLS models was consequently analyzed and presented. Lastly, a discussion on convergences and divergences of these results is also provided.


Author(s):  
H.-J. Przybilla ◽  
M. Lindstaedt ◽  
T. Kersten

<p><strong>Abstract.</strong> The quality of image-based point clouds generated from images of UAV aerial flights is subject to various influencing factors. In addition to the performance of the sensor used (a digital camera), the image data format (e.g. TIF or JPG) is another important quality parameter. At the UAV test field at the former Zollern colliery (Dortmund, Germany), set up by Bochum University of Applied Sciences, a medium-format camera from Phase One (IXU 1000) was used to capture UAV image data in RAW format. This investigation aims at evaluating the influence of the image data format on point clouds generated by a Dense Image Matching process. Furthermore, the effects of different data filters, which are part of the evaluation programs, were considered. The processing was carried out with two software packages from Agisoft and Pix4D on the basis of both generated TIF or JPG data sets. The point clouds generated are the basis for the investigation presented in this contribution. Point cloud comparisons with reference data from terrestrial laser scanning were performed on selected test areas representing object-typical surfaces (with varying surface structures). In addition to these area-based comparisons, selected linear objects (profiles) were evaluated between the different data sets. Furthermore, height point deviations from the dense point clouds were determined using check points. Differences in the results generated through the two software packages used could be detected. The reasons for these differences are filtering settings used for the generation of dense point clouds. It can also be assumed that there are differences in the algorithms for point cloud generation which are implemented in the two software packages. The slightly compressed JPG image data used for the point cloud generation did not show any significant changes in the quality of the examined point clouds compared to the uncompressed TIF data sets.</p>


Author(s):  
V. E. Oniga ◽  
A. I. Breaban ◽  
E. I. Alexe ◽  
C. Văsii

Abstract. Indoor mapping and modelling is an important research subject with application in a wide range of domains including interior design, real estate, cultural heritage conservation and restoration. There are multiple sensors applicable for 3D indoor modelling, but the laser scanning technique is frequently used because of the acquisition time, detailed information and accuracy. In this paper, the efficiency of the Maptek I-Site 8820 terrestrial scanner, which is a long-range laser scanner and the accuracy of a HMLS point cloud acquired with a mobile scanner, namely GeoSlam Zeb Horizon were tested for indoor mapping. Aula Magna “Carmen Silva” of the “Gheorghe Asachi” Technical University of Iasi is studied in the current paper since the auditorium interior creates a distinct environment that combines complex geometric structures with architectural lighting and for preserving its great cultural value, the monument has a national historical significance. The registration process of the TLS point clouds was done using two methods: a semi-automatic one with artificial targets and a completely automatic one, based on Iterative Closest Point (ICP) algorithm. The resulted TLS point cloud was analysed in relation to the HMLS point cloud by computing the M3C2 (Multiscale Model to Model Cloud Comparison), obtaining a standard deviation of 2.1 cm and by investigating the Hausdorff distances from which resulted a standard deviation (σ) of 1.6 cm. Cross-sections have been extracted from the HMLS and TLS point clouds and after comparing the sections, 80% of the sigma values are less or equal to 1 cm. The results show high potential of using HMLS and also a long-range laser scanner for 3D modelling of complex scenes, the occlusion effect in the case of TLS being only 5% of the scanned area.


Author(s):  
P. Delis ◽  
M. Zacharek ◽  
D. Wierzbicki ◽  
A. Grochala

The use of image sequences in the form of video frames recorded on data storage is very useful in especially when working with large and complex structures. Two cameras were used in this study: Sony NEX-5N (for the test object) and Sony NEX-VG10 E (for the historic building). In both cases, a Sony α f&amp;thinsp;=&amp;thinsp;16&amp;thinsp;mm fixed focus wide-angle lens was used. Single frames with sufficient overlap were selected from the video sequence using an equation for automatic frame selection. In order to improve the quality of the generated point clouds, each video frame underwent histogram equalization and image sharpening. Point clouds were generated from the video frames using the SGM-like image matching algorithm. The accuracy assessment was based on two reference point clouds: the first from terrestrial laser scanning and the second generated based on images acquired using a high resolution camera, the NIKON D800. The performed research has shown, that highest accuracies are obtained for point clouds generated from video frames, for which a high pass filtration and histogram equalization had been performed. Studies have shown that to obtain a point cloud density comparable to TLS, an overlap between subsequent video frames must be 85&amp;thinsp;% or more. Based on the point cloud generated from video data, a parametric 3D model can be generated. This type of the 3D model can be used in HBIM construction.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Linh Truong-Hong ◽  
Roderik Lindenbergh ◽  
Thu Anh Nguyen

PurposeTerrestrial laser scanning (TLS) point clouds have been widely used in deformation measurement for structures. However, reliability and accuracy of resulting deformation estimation strongly depends on quality of each step of a workflow, which are not fully addressed. This study aims to give insight error of these steps, and results of the study would be guidelines for a practical community to either develop a new workflow or refine an existing one of deformation estimation based on TLS point clouds. Thus, the main contributions of the paper are investigating point cloud registration error affecting resulting deformation estimation, identifying an appropriate segmentation method used to extract data points of a deformed surface, investigating a methodology to determine an un-deformed or a reference surface for estimating deformation, and proposing a methodology to minimize the impact of outlier, noisy data and/or mixed pixels on deformation estimation.Design/methodology/approachIn practice, the quality of data point clouds and of surface extraction strongly impacts on resulting deformation estimation based on laser scanning point clouds, which can cause an incorrect decision on the state of the structure if uncertainty is available. In an effort to have more comprehensive insight into those impacts, this study addresses four issues: data errors due to data registration from multiple scanning stations (Issue 1), methods used to extract point clouds of structure surfaces (Issue 2), selection of the reference surface Sref to measure deformation (Issue 3), and available outlier and/or mixed pixels (Issue 4). This investigation demonstrates through estimating deformation of the bridge abutment, building and an oil storage tank.FindingsThe study shows that both random sample consensus (RANSAC) and region growing–based methods [a cell-based/voxel-based region growing (CRG/VRG)] can be extracted data points of surfaces, but RANSAC is only applicable for a primary primitive surface (e.g. a plane in this study) subjected to a small deformation (case study 2 and 3) and cannot eliminate mixed pixels. On another hand, CRG and VRG impose a suitable method applied for deformed, free-form surfaces. In addition, in practice, a reference surface of a structure is mostly not available. The use of a fitting plane based on a point cloud of a current surface would cause unrealistic and inaccurate deformation because outlier data points and data points of damaged areas affect an accuracy of the fitting plane. This study would recommend the use of a reference surface determined based on a design concept/specification. A smoothing method with a spatial interval can be effectively minimize, negative impact of outlier, noisy data and/or mixed pixels on deformation estimation.Research limitations/implicationsDue to difficulty in logistics, an independent measurement cannot be established to assess the deformation accuracy based on TLS data point cloud in the case studies of this research. However, common laser scanners using the time-of-flight or phase-shift principle provide point clouds with accuracy in the order of 1–6 mm, while the point clouds of triangulation scanners have sub-millimetre accuracy.Practical implicationsThis study aims to give insight error of these steps, and the results of the study would be guidelines for a practical community to either develop a new workflow or refine an existing one of deformation estimation based on TLS point clouds.Social implicationsThe results of this study would provide guidelines for a practical community to either develop a new workflow or refine an existing one of deformation estimation based on TLS point clouds. A low-cost method can be applied for deformation analysis of the structure.Originality/valueAlthough a large amount of the studies used laser scanning to measure structure deformation in the last two decades, the methods mainly applied were to measure change between two states (or epochs) of the structure surface and focused on quantifying deformation-based TLS point clouds. Those studies proved that a laser scanner could be an alternative unit to acquire spatial information for deformation monitoring. However, there are still challenges in establishing an appropriate procedure to collect a high quality of point clouds and develop methods to interpret the point clouds to obtain reliable and accurate deformation, when uncertainty, including data quality and reference information, is available. Therefore, this study demonstrates the impact of data quality in a term of point cloud registration error, selected methods for extracting point clouds of surfaces, identifying reference information, and available outlier, noisy data and/or mixed pixels on deformation estimation.


2015 ◽  
Vol 64 (1) ◽  
pp. 125-137 ◽  
Author(s):  
Piotr Wężyk ◽  
Marta Szostak ◽  
Wojciech Krzaklewski ◽  
Marek Pająk ◽  
Marcin Pierzchalski ◽  
...  

Abstract The quarrying industry is changing the local landscape, forming deep open pits and spoil heaps in close proximity to them, especially lignite mines. The impact can include toxic soil material (low pH, heavy metals, oxidations etc.) which is the basis for further reclamation and afforestation. Forests that stand on spoil heaps have very different growth conditions because of the relief (slope, aspect, wind and rainfall shadows, supply of solar energy, etc.) and type of soil that is deposited. Airborne laser scanning (ALS) technology deliver point clouds (XYZ) and derivatives as raster height models (DTM, DSM, nDSM=CHM) which allow the reception of selected 2D and 3D forest parameters (e.g. height, base of the crown, cover, density, volume, biomass, etc). The automation of ALS point cloud processing and integrating the results into GIS helps forest managers to take appropriate decisions on silvicultural treatments in areas with failed plantations (toxic soil, droughts on south-facing slopes; landslides, etc.) or as regular maintenance. The ISOK country-wide project ongoing in Poland will soon deliver ALS point cloud data which can be successfully used for the monitoring and management of many thousands of hectares of destroyed post-industrial areas which according to the law, have to be afforested and transferred back to the State Forest.


Author(s):  
M. R. Hess ◽  
V. Petrovic ◽  
F. Kuester

Digital documentation of cultural heritage structures is increasingly more common through the application of different imaging techniques. Many works have focused on the application of laser scanning and photogrammetry techniques for the acquisition of threedimensional (3D) geometry detailing cultural heritage sites and structures. With an abundance of these 3D data assets, there must be a digital environment where these data can be visualized and analyzed. Presented here is a feedback driven visualization framework that seamlessly enables interactive exploration and manipulation of massive point cloud data. The focus of this work is on the classification of different building materials with the goal of building more accurate as-built information models of historical structures. User defined functions have been tested within the interactive point cloud visualization framework to evaluate automated and semi-automated classification of 3D point data. These functions include decisions based on observed color, laser intensity, normal vector or local surface geometry. Multiple case studies are presented here to demonstrate the flexibility and utility of the presented point cloud visualization framework to achieve classification objectives.


Author(s):  
Y. Xie ◽  
K. Schindler ◽  
J. Tian ◽  
X. X. Zhu

Abstract. Deep learning models achieve excellent semantic segmentation results for airborne laser scanning (ALS) point clouds, if sufficient training data are provided. Increasing amounts of annotated data are becoming publicly available thanks to contributors from all over the world. However, models trained on a specific dataset typically exhibit poor performance on other datasets. I.e., there are significant domain shifts, as data captured in different environments or by distinct sensors have different distributions. In this work, we study this domain shift and potential strategies to mitigate it, using two popular ALS datasets: the ISPRS Vaihingen benchmark from Germany and the LASDU benchmark from China. We compare different training strategies for cross-city ALS point cloud semantic segmentation. In our experiments, we analyse three factors that may lead to domain shift and affect the learning: point cloud density, LiDAR intensity, and the role of data augmentation. Moreover, we evaluate a well-known standard method of domain adaptation, deep CORAL (Sun and Saenko, 2016). In our experiments, adapting the point cloud density and appropriate data augmentation both help to reduce the domain gap and improve segmentation accuracy. On the contrary, intensity features can bring an improvement within a dataset, but deteriorate the generalisation across datasets. Deep CORAL does not further improve the accuracy over the simple adaptation of density and data augmentation, although it can mitigate the impact of improperly chosen point density, intensity features, and further dataset biases like lack of diversity.


2021 ◽  
Vol 10 (11) ◽  
pp. 737
Author(s):  
Ting On Chan ◽  
Hang Xiao ◽  
Lixin Liu ◽  
Yeran Sun ◽  
Tingting Chen ◽  
...  

The 3D laser scanning technique is important for cultural heritage documentation. The laser itself normally does not carry any color information, so it usually requires an embedded camera system to colorize the point cloud. However, when the embedded camera system fails to perform properly under some external interferences, a post-scan colorization method is always desired to improve the point cloud visuality. This paper presents a simple but efficient point cloud colorization method based on a point-to-pixel orthogonal projection under an assumption that the orthogonal and perspective projections can produce similar effects for a planar feature as long as the target-to-camera distance is relatively short (within several meters). This assumption was verified by a simulation experiment, and the results show that only approximately 5% of colorization error was found at a target-to-camera distance of 3 m. The method was further verified with two real datasets collected for the cultural heritage documentation. The results showed that the visuality of the point clouds for two giant historical buildings had been greatly improved after applying the proposed method.


2019 ◽  
Vol 8 (8) ◽  
pp. 343 ◽  
Author(s):  
Li ◽  
Hasegawa ◽  
Nii ◽  
Tanaka

Digital archiving of three-dimensional cultural heritage assets has increased the demand for visualization of large-scale point clouds of cultural heritage assets acquired by laser scanning. We proposed a fused transparent visualization method that visualizes a point cloud of a cultural heritage asset in an environment using a photographic image as the background. We also proposed lightness adjustment and color enhancement methods to deal with the reduced visibility caused by the fused visualization. We applied the proposed method to a laser-scanned point cloud of a high-valued cultural festival float with complex inner and outer structures. Experimental results demonstrate that the proposed method enables high-quality transparent visualization of the cultural asset in its surrounding environment.


Sign in / Sign up

Export Citation Format

Share Document