scholarly journals Prioritising Carbon Sequestration Areas in Southern Queensland using Time Series MODIS Net Primary Productivity (NPP) Imagery

Author(s):  
A. Apan ◽  
L. A. Suarez Cadavid ◽  
L. Richardson ◽  
T. Maraseni

The aim of this study was to develop a method that will use satellite imagery to identify areas of high forest growth and productivity, as a primary input in prioritising revegetation sites for carbon sequestration. Using the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data, this study analysed the annual net primary production (NPP) values (gC/m<sup>2</sup>) of images acquired from 2000 to 2013, covering the Condamine Catchment in southeast Queensland, Australia. With the analysis of annual rainfall data during the same period, three transitions of "normal to dry" years were identified to represent the future climate scenario considered in this study. The difference in the corresponding NPP values for each year was calculated, and subsequently averaged to the get the "<i>Mean of Annual NPP Difference</i>" (MAND) map. This layer identified the areas with increased net primary production despite the drought condition in those years. Combined with key thematic maps (i.e. regional ecosystems, land use, and tree canopy cover), the priority areas were mapped. The results have shown that there are over 42 regional ecosystem (RE) types in the study area that exhibited positive vegetation growth and productivity despite the decrease in annual rainfall. However, seven (7) of these RE types represents the majority (79 %) of the total high productivity area. A total of 10,736 ha were mapped as priority revegetation areas. This study demonstrated the use of MODIS-NPP imagery to map vegetation with high carbon sequestration rates necessary in prioritising revegetation sites.

2012 ◽  
Vol 40 (2) ◽  
pp. 67 ◽  
Author(s):  
Szilard CZOBEL ◽  
Orsolya SZIRMAI ◽  
Zoltan NEMETH ◽  
Csaba GYURICZA ◽  
Judit GAZI ◽  
...  

Using portable, non-destructive own developed chambers (d=60 cm) and infrared gas analyses, the in situ field investigation was performed to study the seasonal and inter-annual dynamics of the stand level CO2-flux and production of sandy grassland that has been extensively grazed for decades. Furthermore, NEE measurements and biomass samples were used to identify the initial effects of grazing exclusion on CO2 exchange, aboveground phytomass and potential plant productivity in years of significantly different precipitation levels. A considerable inter-annual variation in all of the studied parameters was found both in the non-grazed and grazed stands. As a result of the grazing exclusion the CO2 uptake potential of the non-grazed stand increased by 13% compared to the grazed stand. It was more significant in the extreme dry year (220%), however, in wet year slightly lower average carbon sequestration was detected at the non-grazed stand (-13%), than that of the grazed area. Significant carbon sequestration potential was only detected during wet periods in both stands. The rate of CO2 uptake was found to be nearly six times higher in the non-grazed stand in the wet year than in the previous extremely dry year. The drought in 2003 significantly reduced the CO2 uptake of both stands, leading to lower annual net primary production and potential plant productivity. The annual net primary production dropped by almost 40% in the extremely dry year but then it rose by nearly two and a half times in the subsequent year with adequate rainfall.


2017 ◽  
Vol 14 (2) ◽  
pp. 301-310 ◽  
Author(s):  
Carlos M. Duarte

Abstract. Vegetated coastal habitats, including seagrass and macroalgal beds, mangrove forests and salt marshes, form highly productive ecosystems, but their contribution to the global carbon budget remains overlooked, and these forests remain hidden in representations of the global carbon budget. Despite being confined to a narrow belt around the shoreline of the world's oceans, where they cover less than 7 million km2, vegetated coastal habitats support about 1 to 10 % of the global marine net primary production and generate a large organic carbon surplus of about 40 % of their net primary production (NPP), which is either buried in sediments within these habitats or exported away. Large, 10-fold uncertainties in the area covered by vegetated coastal habitats, along with variability about carbon flux estimates, result in a 10-fold bracket around the estimates of their contribution to organic carbon sequestration in sediments and the deep sea from 73 to 866 Tg C yr−1, representing between 3 % and 1∕3 of oceanic CO2 uptake. Up to 1∕2 of this carbon sequestration occurs in sink reservoirs (sediments or the deep sea) beyond these habitats. The organic carbon exported that does not reach depositional sites subsidizes the metabolism of heterotrophic organisms. In addition to a significant contribution to organic carbon production and sequestration, vegetated coastal habitats contribute as much to carbonate accumulation as coral reefs do. While globally relevant, the magnitude of global carbon fluxes supported by salt-marsh, mangrove, seagrass and macroalgal habitats is declining due to rapid habitat loss, contributing to loss of CO2 sequestration, storage capacity and carbon subsidies. Incorporating the carbon fluxes' vegetated coastal habitats' support into depictions of the carbon budget of the global ocean and its perturbations will improve current representations of the carbon budget of the global ocean.


2017 ◽  
Vol 14 (20) ◽  
pp. 4767-4780 ◽  
Author(s):  
Karin F. Kvale ◽  
Katrin J. Meissner

Abstract. Treatment of the underwater light field in ocean biogeochemical models has been attracting increasing interest, with some models moving towards more complex parameterisations. We conduct a simple sensitivity study of a typical, highly simplified parameterisation. In our study, we vary the phytoplankton light attenuation parameter over a range constrained by data during both pre-industrial equilibrated and future climate scenario RCP8.5. In equilibrium, lower light attenuation parameters (weaker self-shading) shift net primary production (NPP) towards the high latitudes, while higher values of light attenuation (stronger shelf-shading) shift NPP towards the low latitudes. Climate forcing magnifies this relationship through changes in the distribution of nutrients both within and between ocean regions. Where and how NPP responds to climate forcing can determine the magnitude and sign of global NPP trends in this high CO2 future scenario. Ocean oxygen is particularly sensitive to parameter choice. Under higher CO2 concentrations, two simulations establish a strong biogeochemical feedback between the Southern Ocean and low-latitude Pacific that highlights the potential for regional teleconnection. Our simulations serve as a reminder that shifts in fundamental properties (e.g. light attenuation by phytoplankton) over deep time have the potential to alter global biogeochemistry.


2020 ◽  
Author(s):  
Raphael Manu ◽  
Marife D. Corre ◽  
Edzo Veldkamp ◽  
Oliver van Straaten

&lt;p&gt;Nutrient availability in tropical forest ecosystems plays a critical role in sustaining forest growth and productivity. Observational evidence for nutrient limitations on net primary productivity (NPP) in the tropics is rare yet crucial for predicting the impacts of human-induced changes on tropical forests, particularly for underrepresented tropical regions in Africa. In an ecosystem-scale nutrient manipulation experiment, we assessed the response of different components of above-ground net primary production (ANPP) to nutrient addition of nitrogen (N), phosphorus (P), potassium (K) and all possible combinations (NP, NK, PK, and NPK) at rates of 125 kg N ha&lt;sup&gt;-1&lt;/sup&gt;yr&lt;sup&gt;-1&lt;/sup&gt;, 50 kg P ha&lt;sup&gt;-1&lt;/sup&gt; yr&lt;sup&gt;-1&lt;/sup&gt; and 50 kg K ha&lt;sup&gt;-1&lt;/sup&gt;yr&lt;sup&gt;-1&lt;/sup&gt;.&lt;/p&gt;&lt;p&gt;We established 32 (8 treatments &amp;#215; 4 replicates) experimental plots of 40 &amp;#215; 40 m&lt;sup&gt;2&lt;/sup&gt; each and measured stem growth of over 15,000 trees with diameter at breast height (dbh) &amp;#8805; 1 cm as well as litter production and above-ground woody biomass production (AWBP), of a lower-montane tropical forest (1100 m a.s.l.) in northwestern Uganda.&lt;/p&gt;&lt;p&gt;After 18 months of nutrient addition, we found that different aspects of ANPP, including litter production and AWBP are controlled by multiple soil nutrients. Specifically, we measured higher total fine-litter production in the N (13.6 &amp;#177; 1.4 Mg ha&lt;sup&gt;-1 &lt;/sup&gt;yr&lt;sup&gt;-1&lt;/sup&gt;) and K (13.3 &amp;#177; 1.8 Mg ha&lt;sup&gt;-1 &lt;/sup&gt;yr&lt;sup&gt;-1&lt;/sup&gt;) addition plots than the control (11.1 &amp;#177; 0.6 Mg ha&lt;sup&gt;-1 &lt;/sup&gt;yr&lt;sup&gt;-1&lt;/sup&gt;) plots. Both reproductive litter (flowers and fruits; 10% of total fine-litter fall) and leaf litter (62% of total fine-litter fall) significantly increased with K addition. In general, fine-litter production in our plots is higher than what has been reported so far for lower-montane tropical forests. Increased AWBP is associated with N addition plots. The response of trees to nutrient addition however, varied with tree sizes. Trees with dbh between 10 &amp;#8211; 30 cm increased significantly in AWBP under PK addition. There was no effect of nutrient addition associated with either smaller (1 &amp;#8211; 10 cm dbh) or larger trees (dbh &gt; 30 cm). The medium-sized trees which may have experienced resource competition but have now transitioned into the canopy layer (exposed to sunlight) are able to use additional nutrient for active growth. In contrast, bigger trees may allocate extra nutrient for reproduction and leaf-vitality, while smaller trees remain shaded, co-limited by sunlight and therefore unable to utilize increased available nutrients for stem diameter growth. ANPP increased by 39% with N addition and marginally by 23% with K additions relative to the control. In conclusion, our experiment provides evidence of N and potentially K limitation of ANPP in this lower-montane tropical forest, and highlights that, in a highly diverse ecosystem different components of ANPP may be regulated by multiple nutrients.&amp;#160;&lt;/p&gt;


2016 ◽  
Vol 12 (11) ◽  
pp. 20160223 ◽  
Author(s):  
Mati Kahru ◽  
Zhongping Lee ◽  
B. Greg Mitchell ◽  
Cynthia D. Nevison

The influence of decreasing Arctic sea ice on net primary production (NPP) in the Arctic Ocean has been considered in multiple publications but is not well constrained owing to the potentially large errors in satellite algorithms. In particular, the Arctic Ocean is rich in coloured dissolved organic matter (CDOM) that interferes in the detection of chlorophyll a concentration of the standard algorithm, which is the primary input to NPP models. We used the quasi-analytic algorithm (Lee et al . 2002 Appl. Opti. 41 , 5755−5772. ( doi:10.1364/AO.41.005755 )) that separates absorption by phytoplankton from absorption by CDOM and detrital matter. We merged satellite data from multiple satellite sensors and created a 19 year time series (1997–2015) of NPP. During this period, both the estimated annual total and the summer monthly maximum pan-Arctic NPP increased by about 47%. Positive monthly anomalies in NPP are highly correlated with positive anomalies in open water area during the summer months. Following the earlier ice retreat, the start of the high-productivity season has become earlier, e.g. at a mean rate of −3.0 d yr −1 in the northern Barents Sea, and the length of the high-productivity period has increased from 15 days in 1998 to 62 days in 2015. While in some areas, the termination of the productive season has been extended, owing to delayed ice formation, the termination has also become earlier in other areas, likely owing to limited nutrients.


Tellus B ◽  
2004 ◽  
Vol 56 (3) ◽  
pp. 230-248 ◽  
Author(s):  
B. Felzer ◽  
D. Kicklighter ◽  
J. Melillo ◽  
C. Wang ◽  
Q. Zhuang ◽  
...  

2021 ◽  
Vol 21 (3) ◽  
Author(s):  
Bastian Bertsch-Hoermann ◽  
Claudine Egger ◽  
Veronika Gaube ◽  
Simone Gingrich

AbstractMountain agroecosystems deliver essential ecosystem services to society but are prone to climate change as well as socio-economic pressures, making multi-functional land systems increasingly central to sustainable mountain land use policy. Agroforestry, the combination of woody vegetation with crops and/or livestock, is expected to simultaneously increase provisioning and regulating ecosystem services, but knowledge gaps concerning trade-offs exist especially in temperate industrialized and alpine regions. Here, we quantify the aboveground carbon (C) dynamics of a hypothetical agroforestry implementation in the Austrian long-term socio-ecological research region Eisenwurzen from 2020 to 2050. We develop three land use scenarios to differentiate conventional agriculture from an immediate and a gradual agroforestry implementation, integrate data from three distinct models (Yield-SAFE, SECLAND, MIAMI), and advance the socio-ecological indicator framework Human Appropriation of Net Primary Production (HANPP) to assess trade-offs between biomass provision and carbon sequestration. Results indicate that agroforestry strongly decreases HANPP because of a reduction in biomass harvest by up to − 47% and a simultaneous increase in actual net primary production by up to 31%, with a large amount of carbon sequestered in perennial biomass by up to 3.4 t C ha-1 yr-1. This shows that a hypothetical transition to agroforestry in the Eisenwurzen relieves the agroecosystem from human-induced pressure but results in significant trade-offs between biomass provision and carbon sequestration. We thus conclude that while harvest losses inhibit large-scale implementation in intensively used agricultural regions, agroforestry constitutes a valuable addition to sustainable land use policy, in particular when affecting extensive pastures and meadows in alpine landscapes.


Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1794
Author(s):  
Mouna Feki ◽  
Giovanni Ravazzani ◽  
Alessandro Ceppi ◽  
Gaetano Pellicone ◽  
Tommaso Caloiero

In this paper, the FEST-FOREST model is presented. A FOREST module is written in the FORTRAN-90 programming language, and was included in the FEST-WB distributed hydrological model delivering the FEST-FOREST model. FEST-FOREST is a process-based dynamic model allowing the simulation at daily basis of gross primary production (GPP) and net primary production (NPP) together with the carbon allocation of a homogeneous population of trees (same age, same species). The model was implemented based on different equations from literature, commonly used in Eco-hydrological models. This model was developed within the framework of the INNOMED project co-funded under the ERA-NET WaterWorks2015 Call of the European Commission. The aim behind the implementation of the model was to simulate in a simplified mode the forest growth under different climate change and management scenarios, together with the impact on the water balance at the catchment. On a first application of the model, the results are considered very promising when compared to field measured data.


Tellus B ◽  
2004 ◽  
Vol 56 (3) ◽  
pp. 230-248 ◽  
Author(s):  
B. FELZER ◽  
D. KICKLIGHTER ◽  
J. MELILLO ◽  
C. WANG ◽  
Q. ZHUANG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document