scholarly journals Dynamic modelling of a 3-CPU parallel robot via screw theory

2013 ◽  
Vol 4 (1) ◽  
pp. 185-197 ◽  
Author(s):  
L. Carbonari ◽  
M. Battistelli ◽  
M. Callegari ◽  
M.-C. Palpacelli

Abstract. The article describes the dynamic modelling of I.Ca.Ro., a novel Cartesian parallel robot recently designed and prototyped by the robotics research group of the Polytechnic University of Marche. By means of screw theory and virtual work principle, a computationally efficient model has been built, with the final aim of realising advanced model based controllers. Then a dynamic analysis has been performed in order to point out possible model simplifications that could lead to a more efficient run time implementation.

Robotica ◽  
2021 ◽  
pp. 1-13
Author(s):  
Xiaogang Song ◽  
Yongjie Zhao ◽  
Chengwei Chen ◽  
Liang’an Zhang ◽  
Xinjian Lu

SUMMARY In this paper, an online self-gain tuning method of a PD computed torque control (CTC) is used for a 3UPS-PS parallel robot. The CTC is applied to the 3UPS-PS parallel robot based on the robot dynamic model which is established via a virtual work principle. The control system of the robot comprises a nonlinear feed-forward loop and a PD control feedback loop. To implement real-time online self-gain tuning, an adjustment method based on the genetic algorithm (GA) is proposed. Compared with the traditional CTC, the simulation results indicate that the control algorithm proposed in this study can not only enhance the anti-interference ability of the system but also improve the trajectory tracking speed and the accuracy of the 3UPS-PS parallel robot.


2015 ◽  
Vol 27 (3) ◽  
pp. 032103 ◽  
Author(s):  
Arash B. Sichani ◽  
Mohsen D. Emami

2014 ◽  
Vol 1006-1007 ◽  
pp. 609-617 ◽  
Author(s):  
Shu Hua Gao ◽  
Rui Fan ◽  
Dan Wang

A 3-axis parallel loading mechanism, which works as a multi-axis load simulator, is proposed for reliability test of multi-axis CNC machine tools by exerting specific load spectrums on the spindle. To achieve efficient loading force control, dynamic model of the 3-DOF translational parallel robot is derived via the virtual work principle and is embedded into the control strategy to build a model-based control scheme. A mass distribution factor is introduced and the rotating inertia of the limbs is neglected to simplify the dynamics equations for better real-time control performance. This simplification method is verified by comparison with the complete dynamics model. Then the simplified dynamic model is integrated with a PI (proportional–integral) controller with feedforward to control the moving platform’s output force in the task space and this control strategy is verified through co-simulations with MATLAB/Simulink and ADAMS. Simulation results show that the proposed model-based PI controller is effective to control the three-dimensional output force of the 3-DOF translational parallel robot.


2001 ◽  
Author(s):  
Miguel Almonacid ◽  
Sunil K. Agrawal ◽  
Rafael Aracil ◽  
Roque J. Saltarén

Abstract This paper presents the dynamic analysis of a six-degree of freedom (dof) parallel robot based on multibody dynamics. The robot is also known as Stewart-Gough platform. The inverse and forward dynamic analysis is presented based on the Newton-Euler formulation with the imposition of the constraints through Lagrange multipliers and the application of the principle of virtual work. The singularity problem within the workspace is also focused and 3D surfaces where the robot reach singular configurations are shown. Finally, simulations for the inverse and forward dynamic of the robot have been carried out showing the computational cost.


2020 ◽  
Vol 52 (11) ◽  
pp. 2630-2637
Author(s):  
Dongyi Li ◽  
Kun Lu ◽  
Yong Cheng ◽  
Wenlong Zhao ◽  
Songzhu Yang ◽  
...  

2014 ◽  
Vol 527 ◽  
pp. 140-145
Author(s):  
Da Xu Zhao ◽  
Bai Chen ◽  
Guo Zhong Shou ◽  
Yu Qi Gu

In view of the existing problems of traditional interventional catheters, particularly poor activity, operation difficulty and mass blind area, a novel interventional catheter with a cable-driven active head-end is proposed, and a prototype was built to verify the performance. This paper deals with the kinematics and dynamics of the cable-driven prototype, a dynamic model based on Kanes method combined with screw theory was presented in this paper. According the mathematical model and the prototypes structure, the analysis of kinematics and dynamics of active head-end-end is done in the environment of Mathematica. The needed driving forces of every joint when the system moving along planned trajectory are calculated. The results can provide a basis for the structure design and motion control of the interventional active catheter.


Author(s):  
Anthony Carpentier ◽  
Nicolas Galopin ◽  
Olivier Chadebec ◽  
Gérard Meunier ◽  
Christophe Guérin

Sign in / Sign up

Export Citation Format

Share Document