Multibody Dynamic Analysis of a 6-DOF Parallel Robot

Author(s):  
Miguel Almonacid ◽  
Sunil K. Agrawal ◽  
Rafael Aracil ◽  
Roque J. Saltarén

Abstract This paper presents the dynamic analysis of a six-degree of freedom (dof) parallel robot based on multibody dynamics. The robot is also known as Stewart-Gough platform. The inverse and forward dynamic analysis is presented based on the Newton-Euler formulation with the imposition of the constraints through Lagrange multipliers and the application of the principle of virtual work. The singularity problem within the workspace is also focused and 3D surfaces where the robot reach singular configurations are shown. Finally, simulations for the inverse and forward dynamic of the robot have been carried out showing the computational cost.

Author(s):  
Jin-Fan Liu ◽  
Karim A. Abdel-Malek

Abstract A formulation of a graph problem for scheduling parallel computations of multibody dynamic analysis is presented. The complexity of scheduling parallel computations for a multibody dynamic analysis is studied. The problem of finding a shortest critical branch spanning tree is described and transformed to a minimum radius spanning tree, which is solved by an algorithm of polynomial complexity. The problems of shortest critical branch minimum weight spanning tree (SCBMWST) and the minimum weight shortest critical branch spanning tree (MWSCBST) are also presented. Both problems are shown to be NP-hard by proving that the bounded critical branch bounded weight spanning tree (BCBBWST) problem is NP-complete. It is also shown that the minimum computational cost spanning tree (MCCST) is at least as hard as SCBMWST or MWSCBST problems, hence itself an NP-hard problem. A heuristic approach to solving these problems is developed and implemented, and simulation results are discussed.


1997 ◽  
Vol 119 (4) ◽  
pp. 831-833 ◽  
Author(s):  
Fan Zijie ◽  
Lu Bingheng ◽  
C. H. Ku

The main objective of this work is to predict the effect of distributed viscoelastic damping on the dynamic response of multilink flexible robot manipulators. A general approach, based on the principle of virtual work, is presented for the modeling of flexible robot arms with distributed viscoelastic damping. The finite element equations are developed, and a recurrence formulation for numerical integration of these equations is obtained. It is demonstrated, by a numerical example, that the viscoelastic damping treatments have a significant effect on the dynamic response of flexible robot manipulators.


2013 ◽  
Vol 373-375 ◽  
pp. 34-37
Author(s):  
Jian Xin Yang ◽  
Zhen Tao Liu ◽  
Jian Wei Sun

The dynamic modeling method for parallel robot based on the principle of virtual work and equivalent tree structure is proposed by taking off the platform and the chains as well as degenerating parallel robot into a tree structure, the closed-form solutions for the inverse and forward dynamics models of parallel robot are derived. The method is applied on kinematics and dynamics analysis of a representative 3-RRR spherical parallel robot.


Author(s):  
Jiegao Wang ◽  
Clément M. Gosselin

Abstract The dynamic analysis of spatial four-degree-of-freedom parallel manipulators is presented in this article. First, expressions for the position, velocity and acceleration of each link constituting the manipulators are obtained. Then, the principle of virtual work is used to derive the generalized input forces of the manipulators. The corresponding algorithm is implemented and numerical examples are given in order to illustrate the results. The results obtained are verified using the classical Newton-Euler approach.


2013 ◽  
Vol 4 (1) ◽  
pp. 185-197 ◽  
Author(s):  
L. Carbonari ◽  
M. Battistelli ◽  
M. Callegari ◽  
M.-C. Palpacelli

Abstract. The article describes the dynamic modelling of I.Ca.Ro., a novel Cartesian parallel robot recently designed and prototyped by the robotics research group of the Polytechnic University of Marche. By means of screw theory and virtual work principle, a computationally efficient model has been built, with the final aim of realising advanced model based controllers. Then a dynamic analysis has been performed in order to point out possible model simplifications that could lead to a more efficient run time implementation.


Sign in / Sign up

Export Citation Format

Share Document