scholarly journals Future storm surge impacts on insurable losses for the North Sea region

2011 ◽  
Vol 11 (4) ◽  
pp. 1205-1216 ◽  
Author(s):  
L. Gaslikova ◽  
A. Schwerzmann ◽  
C. C. Raible ◽  
T. F. Stocker

Abstract. The influence of climate change on storm surges including increased mean sea level change and the associated insurable losses are assessed for the North Sea basin. In doing so, the newly developed approach couples a dynamical storm surge model with a loss model. The key element of the approach is the generation of a probabilistic storm surge event set. Together with parametrizations of the inland propagation and the coastal protection failure probability this enables the estimation of annual expected losses. The sensitivity to the parametrizations is rather weak except when the assumption of high level of increased mean sea level change is made. Applying this approach to future scenarios shows a substantial increase of insurable losses with respect to the present day. Superimposing different mean sea level changes shows a nonlinear behavior at the country level, as the future storm surge changes are higher for Germany and Denmark. Thus, the study exhibits the necessity to assess the socio-economic impacts of coastal floods by combining the expected sea level rise with storm surge projections.

Author(s):  
M.N Tsimplis ◽  
D.K Woolf ◽  
T.J Osborn ◽  
S Wakelin ◽  
J Wolf ◽  
...  

Within the framework of a Tyndall Centre research project, sea level and wave changes around the UK and in the North Sea have been analysed. This paper integrates the results of this project. Many aspects of the contribution of the North Atlantic Oscillation (NAO) to sea level and wave height have been resolved. The NAO is a major forcing parameter for sea-level variability. Strong positive response to increasing NAO was observed in the shallow parts of the North Sea, while slightly negative response was found in the southwest part of the UK. The cause of the strong positive response is mainly the increased westerly winds. The NAO increase during the last decades has affected both the mean sea level and the extreme sea levels in the North Sea. The derived spatial distribution of the NAO-related variability of sea level allows the development of scenarios for future sea level and wave height in the region. Because the response of sea level to the NAO is found to be variable in time across all frequency bands, there is some inherent uncertainty in the use of the empirical relationships to develop scenarios of future sea level. Nevertheless, as it remains uncertain whether the multi-decadal NAO variability is related to climate change, the use of the empirical relationships in developing scenarios is justified. The resulting scenarios demonstrate: (i) that the use of regional estimates of sea level increase the projected range of sea-level change by 50% and (ii) that the contribution of the NAO to winter sea-level variability increases the range of uncertainty by a further 10–20 cm. On the assumption that the general circulation models have some skill in simulating the future NAO change, then the NAO contribution to sea-level change around the UK is expected to be very small (<4 cm) by 2080. Wave heights are also sensitive to the NAO changes, especially in the western coasts of the UK. Under the same scenarios for future NAO changes, the projected significant wave-height changes in the northeast Atlantic will exceed 0.4 m. In addition, wave-direction changes of around 20° per unit NAO index have been documented for one location. Such changes raise the possibility of consequential alteration of coastal erosion.


2013 ◽  
Vol 165 ◽  
pp. 1987-1992 ◽  
Author(s):  
Thomas Wahl ◽  
Ivan D. Haigh ◽  
Sönke Dangendorf ◽  
Jürgen Jensen

2013 ◽  
Vol 124 ◽  
pp. 51-67 ◽  
Author(s):  
T. Wahl ◽  
I.D. Haigh ◽  
P.L. Woodworth ◽  
F. Albrecht ◽  
D. Dillingh ◽  
...  

2014 ◽  
Vol 151 ◽  
pp. 186-195 ◽  
Author(s):  
Xinping Chen ◽  
Sönke Dangendorf ◽  
Nikesh Narayan ◽  
Kieran O'Driscoll ◽  
Michael N. Tsimplis ◽  
...  

2021 ◽  
Author(s):  
Bernd Uebbing ◽  
Christopher Buchhaupt ◽  
Sophie Stolzenberger ◽  
Luciana Fenoglio ◽  
Jürgen Kusche ◽  
...  

&lt;p&gt;&lt;span&gt;A&lt;/span&gt;ccurate knowledge of sea level change, especially close to the coast, is of major importance in order to analyze &lt;span&gt;and&lt;/span&gt; understand drivers of local sea level change and to plan coastal protection measures. &lt;span&gt;S&lt;/span&gt;atellite altimetry provides a continuous global record of sea level rise since about 1993. In recent years, the delay doppler altimetry (DDA), also called SAR altimetry, provides improved results compared to conventional altimetry (CA) by utilizing the Doppler effect along the satellite&amp;#8217;s groundtrack.&lt;/p&gt;&lt;p&gt;The &lt;span&gt;altimeter emits&lt;/span&gt; a radar pulse from the satellite to the Earth&amp;#8217;s surface and measure the power reflected over time from the radar footprint forming a so called &amp;#8220;waveform&amp;#8221;. From the shift, shape and amplitude of this waveform it is possible to estimate sea surface height (SSH), significant waveheight (SWH) and backscatter which is related to wind speed. Due to influences from land surfaces within the radar footprint standard methods of retrieving those estimates tend to become &lt;span&gt;increasingly&lt;/span&gt; uncertain or even fail when the satellite groundtrack &lt;span&gt;approaches the coastline&lt;/span&gt;. In order to still derive meaningful geophysical parameters it is necessary to reprocess or &amp;#8220;retrack&amp;#8221; those waveforms with specialized algorithms resulting in improved estimates.&lt;/p&gt;&lt;p&gt;Here, we present a novel retracker which adapts the Spatio Temporal Altimetry Retracker (STARv1.0) processing scheme for CA to DDA. Generally, the STAR algorithm consists of three steps: (1) Partitioning of the total return waveform into individual sub-waveforms, (2) retracking of each individual sub-waveform resulting in a point-cloud of potential estimates of SSH, SWH and backscatter and (3) selection of final estimates at each 20Hz measurement position. For the application to DDA the three parameter &lt;span&gt;Brown model used in CA-STAR&lt;/span&gt; is replaced by the Signal model Involving Numerical Convolution for SAR (SINCS) model, already implemented in the Technical University Darmstadt &amp;#8211; University Bonn SAR-Reduced SAR (TUDaBo SAR-RDSAR) processing scheme.&lt;/p&gt;&lt;p&gt;&lt;span&gt;T&lt;/span&gt;he combination of the updated STARv2.5 processing scheme with the SINCS &lt;span&gt;model&lt;/span&gt; (STARS) allows to &lt;span&gt;retrieve&lt;/span&gt; high quality sea level estimates for contemporary DDA altimeter missions. We will &lt;span&gt;provide&lt;/span&gt; validation results for Cryosat-2 and Sentinel-3 data in the North Sea region &lt;span&gt;for the &lt;/span&gt;&lt;span&gt;time&lt;/span&gt;&lt;span&gt; period&lt;/span&gt; 2016-2019. Our preliminary results suggest that we are able to derive significantly improved results for SSH, SWH and backscatter from STARS compared to existing state of the art approaches &lt;span&gt;for &lt;/span&gt;DDA. While originally developed for coastal regions, the STAR processing scheme also leads to improved open ocean results.&lt;/p&gt;


2014 ◽  
Vol 119 (10) ◽  
pp. n/a-n/a ◽  
Author(s):  
Sönke Dangendorf ◽  
Francisco M. Calafat ◽  
Arne Arns ◽  
Thomas Wahl ◽  
Ivan D. Haigh ◽  
...  

Ocean Science ◽  
2020 ◽  
Vol 16 (1) ◽  
pp. 31-44 ◽  
Author(s):  
Caroline Rasquin ◽  
Rita Seiffert ◽  
Benno Wachler ◽  
Norbert Winkel

Abstract. Due to climate change an accelerated mean sea level rise is expected. One key question for the development of adaptation measures is how mean sea level rise affects tidal dynamics in shelf seas such as the North Sea. Owing to its low-lying coastal areas, the German Bight (located in the southeast of the North Sea) will be especially affected. Numerical hydrodynamic models help to understand how mean sea level rise changes tidal dynamics. Models cannot adequately represent all processes in overall detail. One limiting factor is the resolution of the model grid. In this study we investigate which role the representation of the coastal bathymetry plays when analysing the response of tidal dynamics to mean sea level rise. Using a shelf model including the whole North Sea and a high-resolution hydrodynamic model of the German Bight we investigate the changes in M2 amplitude due to a mean sea level rise of 0.8 and 10 m. The shelf model and the German Bight Model react in different ways. In the simulations with a mean sea level rise of 0.8 m the M2 amplitude in the shelf model generally increases in the region of the German Bight. In contrast, the M2 amplitude in the German Bight Model increases only in some coastal areas and decreases in the northern part of the German Bight. In the simulations with a mean sea level rise of 10 m the M2 amplitude increases in both models with largely similar spatial patterns. In two case studies we adjust the German Bight Model in order to more closely resemble the shelf model. We find that a different resolution of the bathymetry results in different energy dissipation changes in response to mean sea level rise. Our results show that the resolution of the bathymetry especially in flat intertidal areas plays a crucial role for modelling the impact of mean sea level rise.


2021 ◽  
Vol 13 (8) ◽  
pp. 3733-3753
Author(s):  
Denise Dettmering ◽  
Felix L. Müller ◽  
Julius Oelsmann ◽  
Marcello Passaro ◽  
Christian Schwatke ◽  
...  

Abstract. Information on sea level and its temporal and spatial variability is of great importance for various scientific, societal, and economic issues. This article reports about a new sea level dataset for the North Sea (named North SEAL) of monthly sea level anomalies (SLAs), absolute sea level trends, and amplitudes of the mean annual sea level cycle over the period 1995–2019. Uncertainties and quality flags are provided together with the data. The dataset has been created from multi-mission cross-calibrated altimetry data preprocessed with coastal dedicated approaches and gridded with an innovative least-squares procedure including an advanced outlier detection to a 6–8 km wide triangular mesh. The comparison of SLAs and tide gauge time series shows good consistency, with average correlations of 0.85 and maximum correlations of 0.93. The improvement with respect to existing global gridded altimetry solutions amounts to 8 %–10 %, and it is most pronounced in complicated coastal environments such as river mouths or regions sheltered by islands. The differences in trends at tide gauge locations depend on the vertical land motion model used to correct relative sea level trends. The best consistency with a median difference of 0.04±1.15 mm yr−1 is reached by applying a recent glacial isostatic adjustment (GIA) model. With the presented sea level dataset, for the first time, a regionally optimized product for the entire North Sea is made available. It will enable further investigations of ocean processes, sea level projections, and studies on coastal adaptation measures. The North SEAL data are available at https://doi.org/10.17882/79673 (Müller et al., 2021).


Sign in / Sign up

Export Citation Format

Share Document