scholarly journals On sea level change in the North Sea influenced by the North Atlantic Oscillation: Local and remote steric effects

2014 ◽  
Vol 151 ◽  
pp. 186-195 ◽  
Author(s):  
Xinping Chen ◽  
Sönke Dangendorf ◽  
Nikesh Narayan ◽  
Kieran O'Driscoll ◽  
Michael N. Tsimplis ◽  
...  
Author(s):  
M.N Tsimplis ◽  
D.K Woolf ◽  
T.J Osborn ◽  
S Wakelin ◽  
J Wolf ◽  
...  

Within the framework of a Tyndall Centre research project, sea level and wave changes around the UK and in the North Sea have been analysed. This paper integrates the results of this project. Many aspects of the contribution of the North Atlantic Oscillation (NAO) to sea level and wave height have been resolved. The NAO is a major forcing parameter for sea-level variability. Strong positive response to increasing NAO was observed in the shallow parts of the North Sea, while slightly negative response was found in the southwest part of the UK. The cause of the strong positive response is mainly the increased westerly winds. The NAO increase during the last decades has affected both the mean sea level and the extreme sea levels in the North Sea. The derived spatial distribution of the NAO-related variability of sea level allows the development of scenarios for future sea level and wave height in the region. Because the response of sea level to the NAO is found to be variable in time across all frequency bands, there is some inherent uncertainty in the use of the empirical relationships to develop scenarios of future sea level. Nevertheless, as it remains uncertain whether the multi-decadal NAO variability is related to climate change, the use of the empirical relationships in developing scenarios is justified. The resulting scenarios demonstrate: (i) that the use of regional estimates of sea level increase the projected range of sea-level change by 50% and (ii) that the contribution of the NAO to winter sea-level variability increases the range of uncertainty by a further 10–20 cm. On the assumption that the general circulation models have some skill in simulating the future NAO change, then the NAO contribution to sea-level change around the UK is expected to be very small (<4 cm) by 2080. Wave heights are also sensitive to the NAO changes, especially in the western coasts of the UK. Under the same scenarios for future NAO changes, the projected significant wave-height changes in the northeast Atlantic will exceed 0.4 m. In addition, wave-direction changes of around 20° per unit NAO index have been documented for one location. Such changes raise the possibility of consequential alteration of coastal erosion.


2014 ◽  
Vol 99 ◽  
pp. 1-16 ◽  
Author(s):  
Natasha L.M. Barlow ◽  
Antony J. Long ◽  
Margot H. Saher ◽  
W. Roland Gehrels ◽  
Mark H. Garnett ◽  
...  

2011 ◽  
Vol 11 (4) ◽  
pp. 1205-1216 ◽  
Author(s):  
L. Gaslikova ◽  
A. Schwerzmann ◽  
C. C. Raible ◽  
T. F. Stocker

Abstract. The influence of climate change on storm surges including increased mean sea level change and the associated insurable losses are assessed for the North Sea basin. In doing so, the newly developed approach couples a dynamical storm surge model with a loss model. The key element of the approach is the generation of a probabilistic storm surge event set. Together with parametrizations of the inland propagation and the coastal protection failure probability this enables the estimation of annual expected losses. The sensitivity to the parametrizations is rather weak except when the assumption of high level of increased mean sea level change is made. Applying this approach to future scenarios shows a substantial increase of insurable losses with respect to the present day. Superimposing different mean sea level changes shows a nonlinear behavior at the country level, as the future storm surge changes are higher for Germany and Denmark. Thus, the study exhibits the necessity to assess the socio-economic impacts of coastal floods by combining the expected sea level rise with storm surge projections.


2004 ◽  
Vol 61 (9) ◽  
pp. 1558-1564 ◽  
Author(s):  
K Brander ◽  
R Mohn

We examine the effect of introducing an environmental factor — the North Atlantic Oscillation (NAO) index — into a stock–recruit relationship fitted to 13 North Atlantic cod (Gadus morhua) stocks and discuss the implications for management. The NAO has a significant effect on recruitment of four of the stocks (positive effect on recruitment in the North Sea, Baltic Sea, and Irish Sea; negative effect on recruitment at Iceland), and the pattern of positive and negative effects on all stocks is consistent with the geographic influence of the NAO on environmental variables. Observed variability in the NAO should be taken into account in interpreting the causes of past changes in cod stocks. The NAO index for the previous winter is available by April and thus may provide an early indication of the likely range of cod recruitment in the current year. In areas, such as the North Sea, where the effect is strong, medium- and long-term assessments of recruitment and yield of the cod stocks should consider likely future states of the NAO. The NAO can be used to represent environmental variability in stock projections and thereby provide a better basis for the estimation of risk.


2018 ◽  
Vol 45 (21) ◽  
pp. 11,827-11,836 ◽  
Author(s):  
Jason Holt ◽  
Jeff Polton ◽  
John Huthnance ◽  
Sarah Wakelin ◽  
Enda O'Dea ◽  
...  

2005 ◽  
Vol 2 (1) ◽  
pp. 87-96 ◽  
Author(s):  
H. Thomas ◽  
Y. Bozec ◽  
H. J. W. de Baar ◽  
K. Elkalay ◽  
M. Frankignoulle ◽  
...  

Abstract. A carbon budget has been established for the North Sea, a shelf sea on the NW European continental shelf. The carbon exchange fluxes with the North Atlantic Ocean dominate the gross carbon budget. The net carbon budget – more relevant to the issue of the contribution of the coastal ocean to the marine carbon cycle – is dominated by the carbon inputs from rivers, the Baltic Sea and the atmosphere. The North Sea acts as a sink for organic carbon and thus can be characterised as a heterotrophic system. The dominant carbon sink is the final export to the North Atlantic Ocean. More than 90% of the CO2 taken up from the atmosphere is exported to the North Atlantic Ocean making the North Sea a highly efficient continental shelf pump for carbon.


2005 ◽  
Vol 62 (7) ◽  
pp. 1205-1215 ◽  
Author(s):  
J. Alheit ◽  
C. Möllmann ◽  
J. Dutz ◽  
G. Kornilovs ◽  
P. Loewe ◽  
...  

Abstract The index of the North Atlantic Oscillation, the dominant mode of climatic variability in the North Atlantic region, changed in the late 1980s (1987–1989) from a negative to a positive phase. This led to regime shifts in the ecology of the North Sea (NS) and the central Baltic Sea (CBS), which involved all trophic levels in the pelagial of these two neighbouring continental shelf seas. Increasing air and sea surface temperatures, which affected critical physical and biological processes, were the main direct and indirect driving forces. After 1987, phytoplankton biomass in both systems increased and the growing season was extended. The composition of phyto- and zooplankton communities in both seas changed conspicuously, e.g. dinoflagellate abundance increased and diatom abundance decreased in the CBS. Key copepod species that are essential in fish diets experienced pronounced changes in biomass. Abundance of Calanus finmarchicus (NS) and Pseudocalanus sp. (CBS) fell to low levels, whereas C. helgolandicus (NS) and Temora longicornis and Acartia spp. (CBS) were persistently abundant. These changes in biomass of different copepod species had dramatic consequences on biomass, fisheries, and landings of key fish species: North Sea cod declined, cod in the CBS remained at low levels, and CBS sprat reached unprecedented high biomass levels resulting in high yields. The synchronous regime shifts in NS and CBS resulted in profound changes in both marine ecosystems. However, the reaction of fish populations to the bottom-up mechanisms caused by the same climatic shift was very different for the three fish stocks.


Sign in / Sign up

Export Citation Format

Share Document